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Summary 

 

A completely new nonhydrostatic model system known as the Advanced Regional 
Prediction System (ARPS) has been developed in recent years at the Center for Analysis and 

Prediction of Storms (CAPS) at the University of Oklahoma. The ARPS is designed from the 

beginning to serve as an effective tool for basic and applied research and as a system suitable for 
explicit prediction of convective storms as well as weather systems at other scales. The ARPS 

includes its own data ingest, quality control and objective analysis packages, a data assimilation 

system which includes single-Doppler velocity and thermodynamic retrieval algorithms, the forward 

prediction component, and a self-contained post-processing, diagnostic and verification package. 
 The forward prediction component of the ARPS is a three-dimensional, nonhydrostatic 

compressible model formulated in generalized terrain-following coordinates. Minimum 

approximations are made to the original governing equations. The split-explicit scheme is used to 

integrate the sound-wave containing equations, which allows the horizontal domain-decomposition 

strategy to be efficiently implemented for distributed-memory massively parallel computers. The 

model performs equally well on conventional shared-memory scalar and vector processors. The 

model employs advanced numerical techniques, including monotonic advection schemes for scalar 
transport and variance-conserving fourth-order advection for other variables. The model also 

includes state-of-the-art physics parameterization schemes that are important for explicit prediction 

of convective storms as well as the prediction of flows at larger scales. 
Unique to this system are the consistent code styling maintained for the entire model system 

and thorough internal documentation. Modern software engineering practices are employed to 

ensure the system is modular, extensible and easy to use.  
The system has been undergoing real-time prediction tests at the synoptic through storm 

scales in the past several years over the continental United States as well as in part of Asia, some of 
which included retrieved Doppler radar data and hydrometeor types in the initial condition. 

As the first of a two-part paper series, we describe herein the dynamic and numerical 
framework of the model, together with the subgrid-scale turbulence and the PBL parameterization. 
The model dynamic and numerical framework is then verified using idealized and realistic mountain 

flow cases and an idealized density current. Other physics parameterization schemes will be 

described in Part II, which is followed by the verification against observational data of the coupled 

soil-vegetation model, surface layer fluxes and the PBL parameterization. Applications of the model 
to the simulation of an observed supercell storm and to the prediction of a real case are also found in 

Part II. In the latter case, a long-lasting squall line developed and propagated across the eastern part 
of the United States following a history number of tornado outbreak in the state of Arkansas. 
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1. Introduction 

 Three-dimensional nonhydrostatic modeling of atmospheric convection started in the mid-
1970s (e.g., Steiner, 1973; Miller and Pearce, 1974; Schlesinger, 1975; Tapp and White, 1976; 
Clark, 1977; Klemp and Wilhelmson, 1978), following the success of earlier 2-D modeling studies 

that used nonhydrostatic equations in either primitive form (Lilly, 1962) or vorticity form (Orville, 
1968). These and other studies significantly advanced our understanding of thunderstorm dynamics 

(Lilly, 1979; Klemp, 1987) as well as other small-scale phenomena.  However, modeling research 

on the storm-scale (defined here loosely as the scale at which non-hydrostatic dynamics are 

important and attention is paid to individual storm elements, e.g., updrafts and downdrafts) 
remained in the simulation mode for much of the last two decades. These simulations typically used 

horizontally homogeneous initial conditions with artificial perturbations to initiate convection.  
 Two major developments in the recent years provided the impetus for moving from a mode 

of convective storm simulation to one of prediction.  The first is the deployment of about 160 

Doppler radars (Crum and Albert, 1993) in the U. S. that provides nearly continuous single-Doppler 
coverage of spatial and temporal scales relevant to storm prediction.  The second concerns with 

techniques for retrieving unobserved quantities from single-Doppler radar data to yield a consistent 
set of mass and wind fields appropriate for initializing a storm-scale prediction model (e.g., Kapitza, 
1991; Liou et al., 1991; Sun et al., 1991; Qiu and Xu., 1992; Shapiro et al., 1995; Sun and Crook, 
1994). Perhaps equally important for the realization of numerical weather prediction (NWP) on the 

storm scale is the advent and accessibility of increasingly more powerful parallel-processing 

supercomputers.  
 In 1989, the Center for Analysis and Prediction of Storms was established at the University 

of Oklahoma as one of the National Science Foundation’s first 11 Science and Technology (S&T) 
Centers. Its formal mission is to demonstrate the practicability of storm-scale numerical weather 

prediction and to develop, test, and validate a regional forecast system appropriate for operational, 
commercial, and research applications. Its ultimate vision is to make available a fully functioning 

stormscale NWP system around the turn of the century (Lilly, 1990; Droegemeier, 1990). 
 Central to achieving this goal is an entirely new three-dimensional, nonhydrostatic model 
system known as the Advanced Regional Prediction System (ARPS). It includes a data ingest, 
quality control, and objective analysis package, a single-Doppler radar parameter retrieval and 

assimilation system, the prediction model itself, and a post-processing package. These components 

are illustrated in Fig. 1. 
 In planning for its development, the ARPS was required to meet a number of criteria. First, it 
had to accommodate, through various assimilation strategies, new data of higher temporal and 

spatial density (e.g., WSR-88D data) than had traditionally been available. Second, the model had to 

serve as an effective tool for studying the dynamics and predictability of storm-scale weather in both 

idealized and more realistic settings. It must also handle atmospheric phenomena ranging from 

regional scales down to micro-scales as interactions across this spectrum are known to have 

profound impacts on storm-scale phenomena. These needs required that the model have a flexible 

and general dynamic framework and include comprehensive physical processes. The system should 

also run efficiently on massively parallel computers. In short, it was our goal to develop a model 
system that can be used effectively for both basic atmospheric research and operational numerical 
weather prediction, on scales ranging from regional to micro-scales. 
 In section 2 of this paper, we will describe the dynamic framework of the forward prediction 

component of the ARPS system. We will describe in section 3 several options of subgrid-scale 

turbulence parameterization together with a 1.5-order turbulent kinetic energy (TKE)-based 
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planetary boundary layer (PBL) parameterization scheme. Other physics parameterizations will be 

detailed in Part II (Xue et al., 2000) and will be briefly outlined in section 4. The numerical 
treatment of various processes in the model is presented in section 5 with additional details found in 

the Appendices. Section 6 discusses the computational aspects of the model, and Sections 7 and 8 

verify the dry dynamics of the model using mountain flows and a nonlinear density current. 
Summary is found in section 9. 

2. Dynamics Equations 

2.1. Historical perspective 

Three-dimensional nonhydrostatic models can be divided into two broad categories: those 

containing fast acoustic modes (Tapp and White, 1976; Klemp and Wilhelmson, 1978, KW 

hereafter) and those that filter such modes via certain type of anelastic approximation (Miller and 

Pearce, 1974; Schlesinger, 1975; Clark, 1977; Xue and Thorpe, 1991). For the former, commonly 

referred to as compressible models, the acoustic waves must be treated in special ways to attain 

computational efficiency. Tapp and White (1976) used a semi-implicit integration scheme that is 

absolutely stable for linearized sound waves, while Klemp and Wilhelmson (1978) employed a 

mode-splitting technique where the acoustic waves and slow modes are integrated separately using 

different time steps. In the latter case, the vertical acoustic modes are usually treated implicitly to 

remove the time step limitation from these modes due to the Courant-Fredrichs-Lewy (CFL) 
stability condition. 

In the anelastic (sound-proof) models, a prognostic equation for pressure (or alternatively 

density) is absent, and the pressure (or geopotential height in pressure-based coordinates) has to be 

diagnosed from an elliptic equation derived from the equations of motion. In order to filter out 
acoustic modes, certain approximations have to be made (see, e.g., discussion by Durran, 1989). 

The mode-splitting technique has gained considerable popularity since KW because of its 

simplicity and effectiveness (Tripoli and Cotton, 1982; Chen, 1991; Tripoli, 1992; Dudhia, 1993; 
Hodur, 1997).  An attractive feature of models using this approach is that all computations are local 
to the grid points involved in the finite difference stencil, making their implementation on 

distributed-memory parallel processor (PP) computers straightforward through the use of domain 

decomposition strategies (Johnson et al., 1994; Droegemeier et al., 1995b). Different from anelastic 

systems, the compressible system of equations does not have to make any approximation, making it 
suitable to a wider range of applications. 
 The semi-implicit method used by Tapp and White (Tapp and White, 1976) for compressible 

systems has in recent years been adopted by other models (Tanguay et al., 1990), and has been 

further extended to include linear gravity wave modes (Cullen, 1990) so as to remove its time step 

limitation. Because of its absolute stability with respect to modes treated implicitly, this method is 

often combined with semi-Lagrangian advection schemes (Tanguay et al., 1990; Golding, 1990) to 

achieve high computational efficiency. In practice, however, the efficiency of such schemes has to 

be considered together with solution accuracy. For example, it is known that implicit schemes 

distort (slow down) gravity waves when used with large time steps (Tapp and White, 1976). Semi-
implicit systems usually involve solving a global elliptic equation, making their efficient 
implementation on distributed-memory parallel computers less straightforward. 

Based on the above considerations, we choose to use a fully compressible system of 
equations and solve them using the ‘split-explicit’ time integration method. 
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2.2. The governing equations of ARPS 

 The governing equations of the ARPS include conservation equations for momentum, heat, 
mass, water substance (water vapor, liquid and ice), subgrid scale (SGS) turbulent kinetic energy 

(TKE), and the equation of state of moist air. Among the three state variables, i.e., temperature, 
pressure and density, prognostic equations for two of them are needed and the third variable can be 

diagnosed from the equation of state.  
For the temperature, modelers usually choose between temperature (e.g., Dudhia, 1993), and 

potential temperature(e.g., KW). Some modelers favor ice-liquid potential temperature (e.g., Tripoli 
and Cotton, 1981). In the ARPS, we choose to predict potential temperature and pressure then 

diagnose density. The potential temperature is chosen because it is conservative for adiabatic 

processes. The ice-liquid potential temperature is supposed to be conserved even in the presence of 
phase changes, but its definition involves approximations.  

For the pressure equation, modelers again have the choice of using pressure or Exner 
function as the prognostic variable. Most existing compressible models predict the Exner function 

instead of pressure (e.g., Klemp and Wilhelmson, 1978; Tapp and White, 1976), but we choose to 

predict pressure. In such a case, the pressure gradient force (PGF) is written as in the original 
Navier-Stokes equations (e.g., Batchelor, 1967), so that a fully conservative form of the momentum 

(not velocity) equations can be formulated, both analytically and numerically. 
The ARPS governing equations are first written in a Cartesian coordinate projected onto a 

plane tangent to or intercepting the earth's surface. Using standard mathematical relations (Haltiner 
and Williams, 1980) for the transformation from a local Cartesian space on the sphere to map 

projection space, we obtain the following equations of motion: 

 

1 1( )x m uu mp f f v f w uwa Fρ − −= − + + − − +�� , (1a) 

 

1 1( )y m vv m p f f u vwa Fρ − −= − − + − +� , (1b) 

 

1 2 2 1( )z ww p g f u u v a Fρ − −= − − + + + +�� . (1c) 

In the above and in the equations to follow, the dot operator denotes the total time derivative, e.g., 
� /u du dt� , and subscripts t, , , , , and x y z ξ η ζ  denote partial temporal or spatial derivative, e.g., 
u u xx � � �/ . In obtaining (1a-c), no approximation is made other than that the ellipticity of the earth 

is neglected and the atmosphere is assumed to be thin so that the radius is replaced by the mean 

earth radius at the sea level a. Note that the spatial derivatives of map factor due to curvature are 

retained in tan( ) /m y xf um vm u aφ≡ − + , as are the Coriolis terms due to vertical motion (those 

involving 

~
f ). The definitions of other symbols are found in Appendix A. Note that for this system, 

only gravitational, pressure gradient and frictional forces (F terms) can change kinetic energy. All 
other terms cancel each other in the kinetic energy equation. 
 The equations of state for moist air (see Dutton, 1986), mass continuity, heat energy 

conservation, and conservation of hydrometeor species are, respectively, 

 

1 1( ) 1 ( ) (1 )d v v v lip R T q q q qρ ε− −� �= − + + +� � , (1d) 

 { }2 ( / ) ( / )x y zm u m v m wρ ρ � �= − + +� �� , (1e) 

 

1( )pQ Cθ π −=� � , (1f) 

 �q Sq� . (1g) 

Here 
�Q  denotes heat source, and Sq represents sources due to moist processes.  
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2.3. The curvilinear coordinate system  

The actual equations of the ARPS are written in a curvilinear coordinate system (ξ, η, ζ) 
defined by  

 � � � � � �� � �( ), ( ), ( , , )x y x y zand . (2) 
This coordinate system is a special case of the fully three-dimensional curvilinear system since 

constant surfaces of ξ and η remain parallel to those of constant x and y, respectively. The vertical 
transformation allows grid stretching and ensures that the lower boundary conforms to the terrain. 
The horizontal transformation allows horizontal grid stretching. Eqs.(2) represent a transformation 

that maps a domain with stretched grid and irregular lower boundary to a regular rectangular domain 

with equal grid space in each direction. We call the latter the computational domain. 
 The governing equations for fluid motion in a fully 3-D curvilinear system can be found in 

Thompson et al. (1985), Sharman et al. (1988) and Shyy and Vu (1991). Following their work, we 

use the Cartesian instead of the contravariant velocity components as the basic dependent variables. 
As shown in Sharman et al. (1988), the Cartesian velocity components u, v and w can be expressed 

as functions of the contravariant velocities Uc, Vc
 and Wc

 and vice versa. For the transformation 

defined by (2), which is a special case of the fully 3-D curvilinear transformation, we have 

 U uJ G u xc
� �3 / / ,�  V vJ G v yc

� �4 / / ,� and W uJ vJ w x y Gc
� � �( ) / ,1 2 � �  (3) 

where 

 J z y J z x J z y J z x1 2 3 4� � � � � �� � � � � � � �, , ,  and G z x y� � � � . (4) 

J J J J1 2 3 4, , and  are Jacobians of transformation and G  is the determinant of the Jacobian matrix 

of transformation from the (ξ, η, ζ) system to the (x, y, z) system. It is clear that Uc
 differs from u by 

a factor of xξ, which is the grid stretching factor in the x-direction. The same is true in the y 

direction. The formula for Wc
 is more complicated because this component is not orthogonal to the 

other velocity components. 
 The transformation relations for spatial derivatives from (x,y,z) to (ξ, η, ζ) coordinates are 

 � � �
� �x J J G� �3 1b g b g / ,  � � �

� �y J J G� �4 2b g b g / ,  and � �� � �z x y G� d i / .  (5) 

 Most terrain-following coordinate models (e.g., Clark, 1977; Pielke and Martin, 1981) 
define the coordinate transform therefore the transformation Jacobians analytically. In the ARPS, 
the computational grid is defined numerically and therefore can be arbitrary. The Jacobians are 

calculated numerically according to (4). This allows for additional flexibility, in fact, the grid can be 

made time dependent (Fiedler et al., 1998). The only requirement for the grid generation is that the 

lowest grid level conforms to the terrain. Several built-in options for creating the computational grid 

with optional stretching are available in the model. They allow for easy setup of, for example, quasi-
uniform vertical levels at the lower and upper levels, and stretched levels in-between. One can also 

choose to flatten the coordinate surfaces above a certain height, so that the error associated with 

calculating horizontal gradients (e.g., in horizontal PGF terms) in a non-orthogonal grid is 

eliminated there. Fig. 3 shows an example of this generalized terrain-following coordinate in which 

the vertical grid is stretched and the coordinate levels become flat at a given height. 

2.4. Final Model Equations 

 Following the practice of most non-hydrostatic atmospheric models (e.g., Clark, 1977; 
Dudhia, 1993), we divide the atmospheric state variables into the base-state (reference state) and the 

deviation 

 � � �� �( ) 'z . 
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The base-state is intentionally chosen to be independent of x and y so that explicit evaluation of its 

horizontal gradient in the (ξ, η, ζ) coordinate is avoided. This eliminates the usually large 

cancellation errors associated with such calculations. The need to solve the perturbation equations 

for vertical acoustic waves implicitly is another reason for defining the reference state. As will be 

seen later, as long as we retain high-order perturbation terms, the actual choice of the base state has 

little effect on the final solution. 
 The base state is required to satisfy the hydrostatic relation: 
 p gz � �� , (6) 

where �  is the base-state density that contains the effect of base-state water vapor. 
 For convenience of notation, we define the following: 

 � � � � �
* * * * * * *, ,� � � �G U U V V W Wc c cand . (7) 

The final prognostic equations in the ARPS are obtained by transforming Eqs.(1a-g) into the 

curvilinear coordinate using relations given in the previous section. In addition, there is an equation 

for the sub-grid scale turbulent kinetic energy (TKE) E: 

 

{ }
( )

* 1 * *
3 1

* 1

( ) ( ' ) ( ' )

( ) ,

t

m u

u m J p Div J p Div

ADV u f f v f w uwa GD

ξ ξξ ζ
ρ ρ ρ α α

ρ

−

−

� � � �+ − + − =� � � �

� �− + + − − +� �
�

 (8a) 

 

( ) { }* 1 * *
4 2

* 1

( ' ) ( ' )

( ) ( ) ,

t

m v

v m J p Div J p Div

ADV v f f u vwa GD

η ηη ζ
ρ ρ ρ α α

ρ

−

−

� � � �+ − + − =� � � �

− − + − +
 (8b) 

 

( ) ( ) 1* 1 * 1 * 1

1 * * 2 2 1

( ' ) ' '

( ) ' ( ) ,

t

w

w x y p Div g p p

ADV w g B f u u v a GD

ξ η ζ ζ
ρ ρρ α ρρ ρ γ θ θ

ρρ ρ ρ

−− − −

− −

� �� �+ − + − =� � � �

− + + + + +�

 (8c) 

 

( ) ( ) ( ) ( ){ }
{ }

2 2 1 1

2 1 1

'

' ' ' ,

c c c
s

t

c c c
s

G p G gw c m GU m GV m GW

m GU p GV p GW p G c AA

ξ η ζ

ξ η ζ

ρ ρ

ρ θ θ

− −

− −

� �− + + + =
� �� �

� � � �− + + + +� �� �
� �

 (8d) 

 � � � � �
� �

* *' ( ' )c h
t xw ADV GD GS� � � � �  (8e) 

 � � � �

* *( ) /q ADV q V q z GD GS
t q q qc h d i� � � � � , (8f) 

 � � �
�

* * * /( ) /E ADV E C K Def E Div C l E GD
t m Ec h � � � � � � �

�
2 1 3 22 3 2  (8g)

 

where the advection operator ADV(φ) is defined as 

 

( ) ( ) ( )

* * *

2 * 1 * 1 * *

( )ADV m U V W

m U m V m W G Div

ξ η ζ

ξ η ζ

φ φ φ φ

φ φ φ φ− −

� �≡ + +� �

� �= + + −� �� �

 (9) 

and the density weighted divergence Div*
 is defined as 

 

 ( ) ( ){ }* 2 * 1 * 1 *( ) 1/Div V G m U m V m W ζ
ξ η

ρ − −� �≡ ∇ ⋅ = + +� �� �

�

. (10) 

2.5. Discussion of the Equations 

 In vertical momentum equation (8c), B' includes the contributions of water species and 

second order perturbation pressure and temperature to the buoyancy: 



 6

 B
q

q

q q

q

p

p

p

p
v

v

v li

v

'
' ' ' ' ' '

�

�

�
�

�

� �
�

�

�

�

�

�

�

�

��1

1

2 2

2

2 2

2

2
. (11) 

Retaining the second-order terms minimizes the impact of approximations due to expansions around 

the reference state. Neglecting terms of orders higher than second order in (11) is the only 

approximation made from equation set (1) to (8). Terms D in the equations denote subgrid scale 

turbulence and computational mixing/numerical diffusion, while most other terms are readily 

recognizable. 
It should also be noted that in the horizontal PGF and other terms where the horizontal 

gradient of base-state variables is taken, we explicitly set these terms to zero. By doing so, we avoid 

potentially large cancellation error associated with computing horizontal finite differences in the 

transformed coordinate. This problem becomes particularly serious when the atmosphere is strongly 

stratified in the vertical and the horizontal grid spacing is much larger than the vertical (Janjic, 
1977; Mesinger and Janjic, 1985). By separating the horizontally homogeneous base-state from the 

total state variables (which is not typically done in hydrostatic models) and explicitly setting their 
horizontal gradients to zero, the numerical accuracy of the model is improved. The use of flattened 

coordinate surfaces at the upper levels, as mentioned earlier, also helps reduce such cancellation 

errors, particularly near the tropopause where the vertical change in stratification is large. 
In Eq.(8c), the hydrostatically balanced portion of the vertical pressure gradient is subtracted 

off, again to reduce cancellation error. The perturbation density ρ' has to be diagnosed. To facilitate 

the use of vertically implicit solver for acoustic modes (discussed further later), we expand ρ' in 

terms of other prognostic variables and retain all first-order terms as well as second-order terms in θ' 
and p', as they appear in Eq.(11). This should give sufficient accuracy for almost all meteorological 
applications.  
 The terms involving α Div*

 in the momentum equations are artificial “divergence damping” 

terms designed to attenuate acoustic waves, where� � �� � �, and  are the damping coefficients in 

three directions (Skamarock and Klemp, 1992). By performing a divergence operation on the 
momentum equations, one can obtain a 3-D divergence equation of the form 

 Div Div Div Div
t xx yy zz

* * * * ...c h c h c h c h� � � �� � �� � � . (12) 

It is clear that these terms act to reduce small-scale mass divergence thereby damp acoustic waves. 
Different from Skamarock and Klemp (1992), we formulate the damping in terms of mass weighted 
divergence instead of velocity divergence. The inclusion of a divergence damping is, however, not 
always needed, especially when vertical acoustic waves are treated implicitly with the forward 
biasing in the time averaging. 

The pressure equation (8d) is derived from equation of state (1d) and mass continuity 
equation (1e). The last term on the RHS of the equation include contributions to pressure change 

from diabatic heating and changes in water vapor, liquid and ice water. A ≡ 1 + 0.61qv + qli. In 

general, such contributions are small and Dudhia (1993) argues that a model with a rigid lid behaves 
more realistically (more like an atmosphere without an upper lid where the air expands isobarically) 
without these terms. The model has the option to neglect these terms as well. 
 Equations (8e) and (8f) are the conservation equations for potential temperature θ and water 
species (qv, qc, qr, qi, qs and qh). Terms S are the sources from microphysical, radiative and other 
processes. Again explicit advection of � and qv is avoided. The second term on the RHS of the q 

equation represents hydrometer sedimentation at a terminal velocity Vq, and is non-zero for 
rainwater, snow and hail or grapual.  
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It should be noted that the momentum and scalar conservation equations (8a-g) have been 

multiplied by �  on both sides. Doing so yields a set of equations whose advection terms can be 

written in a flux-divergence form for anelastic flows, and can be formulated to conserve the density- 
( � ) weighted first and second moments of the advected quantities numerically, thereby controlling 

nonlinear computational instability. 
Finally, since a minimum of approximations were made in equation set (8), the system 

should maintain good energy conservation as does the original unapproximated set in (1). 

3. Subgrid-scale and PBL turbulence 

3.1. Subgrid-scale turbulence parameterization 

 In the ARPS, three subgrid-scale (SGS) closure options for turbulent mixing terms D in 
Eqs.(8a-f) are available: the first-order Smagorinsky/Lilly scheme (Smagorinsky, 1963; Lilly, 1962); 
the 1.5-order TKE-based scheme (Deardorff, 1980; Klemp and Wilhelmson, 1978; Moeng, 1984); 
and the Germano dynamic closure scheme (Germano et al., 1991; Wong, 1992; Wong and Lilly, 
1994). We retain fully three dimensional formulation at all scales and include the map factor, m, in 
the formulation. 
 According to Smagorinsky (1963) and Lilly (1962), the turbulent terms represented by D in 

the momentum equations (8a-c) may be expressed in terms of the Reynolds stress tensor τij, 

 1 2 3( ) ( ) ( )
iu i x i y i zD m τ τ τ� �= + +� � , (13) 

where index i (=1, 2 or 3) represents the Cartesian coordinates. The stress tensor ijτ  is related to the 

deformation tensor Dij through 

 � �i j mj i jK D�  (14) 

where   Km j  is the turbulent mixing coefficient for momentum in the xj direction and deformation 

tensor Dij  is defined as  

 D m m m u m m u m mij i j k i j k x j i k xi j

� �
RST

UVW/ ( ) / ( )
 (15) 

where iu  are velocity components and m m m1 2� �  and m3 1� . 

The turbulent mixing for θ and water variables has a general form of 

 D m H H H
x y z� � � �1 2 3b g b g b g , (16) 

where Hj  is the turbulent flux of φ  in xj direction, 
 H K mj Hj j x j

� � �( ) , (17) 

and KHj is the corresponding mixing coefficient. In general, the same KH is used for heat, moisture 

and hydrometeor quantities and is related to Km through the turbulent Prandtl number, Pr, i.e., KH 

=Km / Pr. In the model, the above formulae are expressed in curvilinear coordinates (ξ, η, ζ). 

a) The 1.5-order TKE-based turbulence closure 

 In the 1.5-order turbulence closure, the eddy mixing coefficient is related to a mixing length 
l and a velocity scale measured by the SGS turbulent kinetic energy (TKE), E, 
 Kmj  = 0.1 E1/2 lj . (18) 
Here we make prevision for using different length scales in different directions.  

 For isotropic turbulence, the length scale is  
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 1 2 3

for unstableor neutralcase

min( , ) for stablecases

l l l
l

∆�
= = = � ∆�

 (19) 

where ∆ = (∆x ∆y ∆z / m2  )1/3 and 1/ 2 10.76sl E N −=  according to Moeng (1984). 

 When the horizontal grid spacing is much larger than vertical grid spacing, it becomes 

necessary to use different horizontal length scale (∆h ) than in the vertical (∆v). For this case of 
anisotropic turbulence,  

 l1 = l2 = ∆h  and  3

for unstableor neutralcase

min( , ) for stable case
v

v s

l
l

∆�
= � ∆�

. (20) 

In this case, the turbulent Prandtl number is determined according to 

 Pr max / , /� �
�

1 3 1 2 3

1
l v�b g , (21) 

where the lower limit of 1/3 is effective when the vertical length scale l3 exceeds the vertical grid 

scale ∆v, which can occur when the TKE-based non-local PBL parameterization scheme to be 

described in Section 3.2 is used. 
 The time-dependent TKE is predicted by Eq.(8g). The equation includes terms for buoyancy 
and shear production, and dissipation and diffusion of TKE. The ground surface heat and moisture 
fluxes (to be discussed in Section 4) also directly contribute the production of turbulence. The 
dissipation term is related to E and length scale l while the diffusion term has a similar form as that 
for other scalar variables. In the dissipation term, we choose Cε = 3.9 at the lowest model level and 

Cε=0.93 at the other levels after Deardorff (1980) and  Moeng (1984). 

b) Smagorinsky-Lilly turbulence closure 

 The modified Smagorinsky scheme (Smagorinsky, 1963; Lilly, 1962) relates Km to grid-
scale flow deformation and static stability instead: 

 
   

Km j = (k ∆
j
)
2

[ max( |Def |2 - N 2/ Pr , 0 ) ]
1/2

 , (22) 

where k= 0.21 after Deardorff (1972). ∆j is a measure of the grid length scale. It is clear that Km is 

non-zero only when the Richardson number 2 2| |Ri N Def −≡  is less than Pr. This critical 
Richardson number often is defined to be a user-specified value between 1/3 and 1. |Def| is the 
magnitude of the deformation |Def| and N is the Brunt-Väisälä frequency calculated according to 
Durran and Klemp (1982) for moist air. 
 On a model grid with similar grid spacings in all three directions, the SGS turbulence is 
nearly isotropic, so that 
 ∆j  = (∆x ∆y ∆z / m2  )1/3 for all j. (23) 
When the grid aspect ratio (∆x /∆z ) is large (e.g., for mesoscale and synoptic scale applications), we 
use different length scales in the horizontal and vertical, in the same way as we do with the TKE 
turbulence option. 

c) Germano dynamic closure scheme 

 This scheme is the same as the Smagorinsky-Lilly scheme except that the parameter k in 
Eq.(22) is dynamically determined based on local flow and varies with space and time. As such, the 
SGS representation is adjusted to match the statistical structure of the smallest resolvable eddies. 
More details can be found in Germano et al. (1991), Wong (1992) and Wong and Lilly (1994). The 
non-terrain version of the Germano scheme is currently available for the ARPS (Wong, 1994). 
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3.2. The non-local PBL parameterization 

 The turbulence closure schemes discussed in Section 3.1 are designed to parameterize the 
local mixing due to sub-grid scale turbulence. In a convectively unstable boundary layer, most of 
the vertical mixing is achieved by 'large' boundary layer eddies (Wyngaard and Brost, 1984). Unless 
the vertical as well as the horizontal resolutions of the model are on the order of 100 m or less so as 
resolve most of the boundary layer eddies (100 m or less), additional parameterization is necessary. 
 The treatment of convective boundary layer turbulence in the model is a combination of the 
3-D, 1.5-order Deardorff SGS turbulence scheme discussed in Section 3.1 and an ensemble 
turbulence closure scheme of Sun and Chang (1986).  The vertical turbulent mixing length l3 in (20) 
is related to the (non-local) PBL depth instead of the local vertical grid spacing inside an unstable 
PBL. This relationship is based on the profile of peak vertical wavelength of vertical velocity 
derived by Caughey et al. (1979) from observational data; that is  

 3 0{1.8 [1 exp( 4 / ) 0.0003exp(8 / )]}i i il l z z z z z= − − − , (24) 

where z is the height above ground and zi the top of PBL. Constant l0 is chosen to be 0.25. In our 
implementation, zi is defined as the height at which a parcel lifted from the surface layer becomes 

neutrally buoyant. 
 Under stable conditions or above the convective boundary layer, the length scale l reverts 
back to that of the Deardorff scheme as in (19) or (20). The performance of this non-local TKE-
based scheme will be evaluated in Part II (Xue et al., 2000) together with the coupled soil-vegetation 
and the surface layer model. 

4. The treatment of other Physical Processes 

The state of the land surface has a direct impact on the sensible and latent heat exchange 
with the atmosphere. The time-dependent state of the land surface is predicted by the surface energy 
and moisture budget equations in a soil-vegetation model. The model used in the ARPS is based on 
Noilhan and Planton (1989), Pleim and Xiu (1995) and later improvements to their model. Surface 
characteristics data sets with resolutions on the order of 1 km have been derived from various data 
sources for use in the ARPS. The ARPS implementation has the capability of defining multiple soil 
types within each grid cell, so as to take advantage of the high-resolution data set. 

For the precipitation processes, the ARPS includes the Kessler (1969) two-category liquid 
water (warm-rain) scheme and the modified three-category ice scheme of Lin et al. (1983). A 
simplified ice parameterization scheme of Schultz (1995) is also available. When cumulus 
parameterization is needed, the Kuo (1965; 1974) and Kain-Fritsch (1990; 1993) schemes are 
available, with the latter being used for mesoscale applications most of the time. 

The treatment of shortwave radiation in the ARPS is based on the models of Chou (1990; 
1992) and the long-wave radiation model on Chou and Suarez (1994). Enhancements to the cloud-
radiation interaction in the presence of explicit hydrometeor types is after Tao et al (1996). 

5. The Numerical Solution 

5.1. Basic discretization 

 The continuous equations given in the previous sections are solved using finite differences 
on an Arakawa C-grid (Arakawa and Lamb, 1977). The C-grid represents the geostrophic 
adjustment better than most other choices and allows for a straightforward and accurate treatment of 
the advection-transport equations for the scalars. With this grid, all prognostic scalar variables are 
defined at the center of the grid box while the normal velocity components are defined on their 
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respective box faces. Other derived variables are evaluated at locations that minimize spatial 
averaging in the difference operations (Fig. 2). 
 We define the following standard average and difference operators: 

 � � �
ns s n s s n s� � � �[ ( / ) ( / )] /� �2 2 2  

 � � � �ns s n s s n s n s� � � �[ ( / ) ( / )] / ( )� � �2 2  (25) 

where ϕ  is a dependent variable, s an independent variable in space or time and n an integer. 
 Using the above notation, U*, V* and W* defined in (7) are evaluated as follows: 

 U U V V W Wc c c* * * * * *,� � �� � �
� � �

and  . (26) 

 The contravariant vertical velocity, W c , is evaluated according to 

 * * * * 1
1 2( ) ( )cW u J v J w x y G

ξ ξ ζζ ζ ζ

ξ η ρ −= + + . (27) 

Clark (1977) found that this form of discretization is necessary for obtaining a correct kinetic energy 
budget in his anelastic model.  

5.2. Time integration of the governing equations 

 The mode-splitting technique of KW is employed to integrate the dynamic equations (8a-d). 
With this method, acoustically active terms, the terms on the LHS of those equations, are integrated 
using a number of small time steps within a single large time step, and these terms are updated every 
small steps. The terms representing slower modes, i.e., those on the RHS of Eqs.(8a-d), are updated 
only once for all these small steps. 

The leapfrog scheme is used for the large time step integration except when alternative 
schemes such as the flux-corrected transport scheme are used for scalar advection. In the small 
steps, u and v are integrated using forward-in-time scheme (with respective to PGF terms), and the 
w and p equations are integrated implicitly in the vertical direction using the Crank-Nicolson 
scheme. 
 Following Skamarock and Klemp (1994), ARPS also provides an option for treating the 

internal gravity wave modes in the small time steps. In this case, the θ-equation is also integrated 

within the small steps, with only the vertical advection of base-state θ, i.e., the second term on the 
LHS of Eq.(8e), being updated every small steps. Correspondingly, the buoyancy term in the w 
equation is also evaluated in the small steps. Doing so removes the restriction resulting from the 
static stability on the large time step. All other scalar equations are integrated in large time steps. 

a) Small time step integration 

 The small step integration of the equations (8a-e) in finite difference form can be expressed 
as 

 �
�

�

�
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 Here we also include the option for integrating the potential temperature equation in the 

small steps. For each big time step, these equations are integrated from t-∆t to t+∆t with a number 
of small time steps, with a step size of ∆τ. Here, superscripts τ and � �� � denote current and future 

small step time levels, and t denotes terms updated in large steps only. We keep ρ and cs constant in 
the small steps when they appear in the coefficients even though they are dependent on the fast-
changing p'  and � ' . The terms related to slower modes (advection, diffusion, inertial oscillations, 
diabatic processes, etc.), i.e., the terms on the RHS of Eqs.(8a-e), are grouped in f t. 
 Weighted time averaging with coefficient β is performed on the vertical PGF and pressure 
buoyancy terms in the w equation, Eq.(28c), and on the vertical velocity divergence and base-state 
pressure advection terms in the p equation, Eq.(28d). These are terms directly responsible for the 

vertically propagating acoustic waves; they will impose a stringent limitation on ∆τ if treated 
explicitly. This averaging couples the two equations and makes the solution procedure implicit. At 
the same time, it removes the limitation on ∆τ due to vertical acoustic modes as long as � � 0.5. 

Durran and Klemp (1983) showed that a β value between 0.5 and 1.0 (effectively biasing the 
scheme towards the future time) offers additional computational stability by damping the vertical 
acoustic modes. A value 0.6 is the default value in the ARPS. The w and p equations are solved by 

first eliminating p'� ���  from the two equations then solving a linear tridiagonal system of equations 

for w� ���
 subject to top and bottom boundary conditions for w.  Details can be found in Appendix 

B. 

b) Terms related to slow modes 

 The finite difference form of the terms for slower (i.e., advection, diffusive and inertial) 
modes represented by f t   in Eqs.(28) is as follows: 

 

* * *( )
tt

t t t
u uf ADVU v v m u m fv f w GD

ξξ ξη η ξ η ζ
ξ ηρ δ δ ρ ρ −∆� �� �= − + − + − +� �� �� � � �

� , (29a) 

 

* *( )
t t

t t t
v vf ADVV u v m u m fu GD

η ηξ η ξ ξ
ξ ηρ δ δ ρ −∆� � � �= − − − − +

� � � �� � � �
, (29b) 

 

*
t

tt t t
w wf ADVW f u B GD

ζ
ξ ζρ −∆� �= − + + +� �� �

� , (29c) 

 
  fp

t = – ADVP t,  (29d) 
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t t t t
wf ADVT GD GSθ θ

−∆= − + + . (29e) 

B in Eq.(29c) represents the acoustically inactive buoyancy terms, as in the second term on the RHS 

of Eq.(8). The mixing terms are lagged in time by ∆t for the linear stability consideration, while all 
other terms are calculated at time t. Finally, we point out that the discretized Coriolis terms, as well 
as the terms involving differentiation of the map factor m, cancel each other in the globally 

integrated total energy equation, ensuring energy conservation. 
 In Eq.(29), ADVU, ADVV, ADVW, ADVP and ADVT are the advection terms for u, v, w, θ' 
and p', respectively. Their continuous form is given by (9) but their discrete formulation depends on 

the choice of advection scheme and the grid staggering. We give the second- or fourth-order 
centered formulation here for scalar � '  only. Those for u, v, w, and p' can be found in Appendix C.  

 

   ADVT = λ m U* δξθ '
ξ
+ V* δηθ '

η
+ W* δζθ '

ζ

+ (1 – λ ) m U*ξ
δ2ξθ '

2ξ
+ V*η

δ2ηθ '
2η

+ W*ζ
δ2ζθ '

2ζ
.
 (30) 

When λ = 1 the scheme is second-order and when λ = 4/3 the scheme is the fourth-order accurate in 

space. As with most fourth-order schemes, the order of accuracy is true only for constant flows. 
When the flow is not constant, the truncation error is proportional to the gradient of the advective 

velocity, and the magnitude of error is smaller than that of the fourth-order scheme of Wilhelmson 

and Chen (1982).  
 The advection terms are written in advective form, which can be shown to be numerically 

equivalent to the flux form consisting of a flux term plus an anelastic correction. The latter form is 

often used by other modelers (e.g., Wilhelmson and Chen, 1982). Neglecting the effect of 
compressibility, it can also be shown (see Appendix C) that both the second-order and fourth-order 
advection formulations in Eq.(30) are quadratically conserving, which is important for controlling 

nonlinear aliasing instability (Arakawa and Lamb, 1977) and for better representation of the 

nonlinear energy cascade. According to our knowledge, this quadratically conserving fourth-order 
formulation has not been used before. 
 For the scalars, two additional options are available. One is the multi-dimensional 
monotonic flux-corrected transport (FCT) scheme after Zalesak (1979), the other is the more 

efficient though less accurate positive definite scheme based on leapfrog centered difference 

schemes (Lafore, 1998). Both schemes are suitable for advecting positive definite variables, while 

the former eliminates both undershoot and overshoot associated with conventional advection 

schemes. In the implementation of the flux limiter, care has been taken so that the extrema in the 

advected scalar such as the potential temperature instead of the density weighted scalar are checked 

to prevent overshoot and undershoot. 
 The discrete form of the mixing terms D in Eq.(29) uses second-order centered differencing 

and is straightforward based on their definitions in Section 3.1. 

c) Time integration of other scalar equations 

 The equations for water substances and TKE are solved entirely on the big time step, and 

their numerical representation is given in a general form for dependent variable q  as 

 � � �� �

�
* * /

q q

t
ADVQ V q z GD GS

t t t t
t

q

t

q
t t

q
t

� �

��
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� �

�

�
, (31) 

where ADVQ  has exactly the same functional form as ADVT in Eq.(30) except when the FCT or the 

simple positive-definite advection scheme is used. The second term on the RHS is a flux divergence 

term, representing sedimentation of q at a terminal velocity Vq (positive downwards). Vq is given by 

the microphysics parameterization and is non-zero only for falling hydrometeors. Since Vq  can be 
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large relative to w, split time steps based on an upstream-forward advection scheme are used for this 

term inside each large time step. Even so, this process can take unproportionally large amount of 
total CPU time because the step time size permitted can be very small when near-surface vertical 
grid spacing is very small. A vertical implicit treatment is being implemented for this term and it 
should provide a better efficiency. 

d) Special treatment of vertical mixing 

 Given that in the PBL the vertical mixing coefficients Kmv and KHv are based on the length 

scale l in Eq.(24), vertical turbulent mixing often results in a linear stability constraint more severe 

than that associated with advection, especially when the vertical resolution is high. To overcome 

this potentially severe restriction on the large time step size, we apply the implicit Crank-Nicolson 

scheme to the vertical mixing so that the integration is absolutely stable for these terms. 

5.3. Boundary conditions  

a) Lateral boundary conditions  

Several types of boundary conditions can be used in arbitrary combinations in the ARPS. At 
the lateral boundaries, they include rigid wall (mirror), periodic, zero-gradient, wave-radiating 

(open) and external (one-way nested) conditions. Furthermore, several variations of the radiation 

lateral boundary condition are available. Two options are used most often. One is based on the 

Orlanski (1976) condition which applies a simple wave equation to the normal velocity component. 
Instead of using locally estimated phase speeds as proposed by Orlanski, we use the vertically 

averaged value of the outward-directed phase speeds. Without the averaging, domain wide pressure 

drift sometimes occurs in simulations with a relatively small domain. 
 Another variation is originally proposed by KW.  In this case, disturbances are assumed to 

propagate at the flow speed plus a dominant internal gravity wave speed; the latter is a user-
specified constant that is typically set to 30 to 45 m s-1. Again, a simple wave equation is applied to 

the normal velocity component only. Other variables on the boundary are obtained from their 
respective prognostic equations, using upstream advection when necessary. 
 One-way interactive self-nesting and nesting within other models are achieved by using the 

Davies-type (1983) lateral boundary condition that includes a boundary relaxation zone. 
Furthermore, the ARPS offers a full implementation of the adaptive grid refinement procedure of 
(Skamarock and Klemp, 1993). This procedure provides ARPS with unlimited level of two-way 

interactive nesting while allowing the nested grids to be added and removed in response to the flow 

evolution during the model integration. 

b) Vertical boundary conditions 

At the lower and upper boundaries, zero-gradient and periodic boundary options are 

available. For most applications, a free-slip mirror condition is applied at the lower boundary. The 

mirror condition is implemented in the computational space; therefore, the contravariant vertical 
velocity Wc

 = 0 at ζ=0. This results in a flow that follows the terrain surface at z = hm, where hm is 

the terrain elevation. When surface friction in the form of surface momentum fluxes is included, the 

lower-boundary condition is often referred to as 'semi-slip'. 
At the upper boundary, the wave-radiating condition of Klemp and Durran (1983) can be 

used in combination with a Rayleigh damping layer. When wave reflection is not anticipated, a rigid 

lid condition can be applied. The implementation is similar to Klemp and Durran, except that a 

cosine transform is used instead of the full Fourier transform, thereby removing the lateral 
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periodicity requirement on w at the top boundary.  The ARPS implementation of radiative upper-
boundary condition is given in Appendix D. 

5.4. Computational mixing 

 As in most numerical models, a certain amount of computational mixing or numerical 
smoothing is often needed to remove poorly resolved small-scale noise. This noise can originate 

from non-linear aliasing and numerical dispersion, from initial analysis, or treatment of physical 
processes. In the ARPS, the computational mixing is included in all prognostic equations except for 
the pressure equations, and has either a second-order (n=2) or fourth-order (n=4) form as given by 
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where Khn 
and Kvn are the coefficients of the n-th order mixing in the horizontal and vertical 

directions, respectively. High-order monotonic numerical mixing / diffusion formulations of Xue 

(2000) are also available and the formulation ensures global conservation of the mixed/diffused 

variables. It is important to note that, unlike turbulent mixing, the computational mixing operates 

along the model grid surfaces and acts on the perturbations from the base state instead of the total 
variables. This type of mixing imposes limitations on the large time step size and the constraint is a 

function of the magnitude of mixing coefficient. 

6. Computational Implementations 

 The ARPS computer code was developed under a stringent set of rules and conventions. 
Uniformity of variable names is maintained across all subroutines in the entire system. Readability, 
maintainability and portability of the code have been high priorities during the model development 
process. These virtues, together with extensive internal and external documentation (e.g., Xue et al., 
1995), are perhaps unique to this code among atmospheric modeling systems. The highly modular 
design and the clearly defined module interfaces greatly ease the process of code modification and 

the addition of new packages. The uniform coding style throughout the model and the external 
documentation have proven to be extremely beneficial to both novice and experienced users. The 

former makes the porting of the code to a variety of parallel platforms straightforward (Droegemeier 
et al., 1995a).  
 Currently unique to the ARPS, we maintain a single version of the source code for all 
computer platforms. Execution on distributed memory platforms are achieved by using MPI 
(Message Passing Interface) message passing library. The calls to these routines are inserted into the 

model in a pre-processing step by a small set of translators written in C (Sathye et al., 1996). Given 

the uniform and consistent coding style followed throughout the ARPS, the translators have to deal 
with only a small subset of possible scenarios. The version of code prior to Version 5.0 is written in 

FORTRAN-77 for maximum portability. Conversion of the entire system into Fortran 90 under a 

new coding standard was recently completed with the aid of a newly developed automatic code 

converter. This version makes use of, among other things, dynamic memory allocation and new 

FORTRAN intrinsic functions for additional flexibility and better efficiency. 
 Significant efforts have also been made in the code optimization. This includes fine-tuning 

the code structure for maximum vectorization and/or parallelization, and replacing all expensive 

power and exponential functions with lookup tables. The latter is done without noticeable loss of 
solution accuracy. In the following sections, we present results of ARPS as applied to mountain 

flow and density current problems. 
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7. Model Verifications with Mountain flows 

 Analytic solutions of linear and nonlinear mountain waves in a constant flow over idealized 

terrain have been commonly used to verify the correctness and accuracy of numerical models (e.g., 
Clark, 1977; Durran and Klemp, 1983; Xue and Thorpe, 1991). Vertical momentum transport by 

mountain waves is an excellent measure of the model's ability handling the lower boundary dynamic 

forcing. Under certain circumstances, mountain forced waves can greatly amplify to cause wave 

breaking and the formation of strong winds on the lee slope. In this section, we compare the quasi-
steady state solutions of the ARPS model against analytical solutions for linear and nonlinear 
mountain waves in both hydrostatic and nonhydrostatic regimes. The results validate the coordinate 

transformation, lower and upper boundary conditions, as well as the time integration procedure of 
the ARPS. We further test the model's ability to simulate strong wave-breaking events, such as the 

well documented 1972 Boulder downslope windstorm (Lilly and Zipser, 1972). 

7.1. Verification against analytic solutions 

 For non-rotational flow forced by a small-amplitude 2-D mountain, the vertical displacement 
of a parcel, δ, at a steady state is governed by a simple equation (Smith, 1979) 

 δ δ δxx zz l+ + =2 0, (33) 
where l, also known as the Scorer parameter, is constant for an isothermal, anelastic, and constant 

flow [ ( )2 2 2 1 2 2 1
0 0( ) (4 )pl g C T U R T− −= −  where g is the gravitational acceleration, pC  is the specific 

heat of air at constant pressure,  R the gas constant for dry air, 0T  the temperature of isothermal 

atmosphere, and U  the constant flow speed]. For a bell-shaped mountain, the solution to (33) can 

be found using the Fourier transform method subject to lower-boundary condition 

δ ( , ) ( )x h x0 = , where h x( )  is the mountain profile. The solution for δ  is proportional to the terrain 

height and the sum of integrals over the horizontal wavenumber, k, from 0 and l and from l to ∞. 
Waves with horizontal wave number less than l are evanescent in the vertical, while shorter waves 

have vertical wave numbers equal to l k2 2− . For a bell-shaped mountain, the dominant horizontal 
wave number is 1/a while the dominant vertical wave number is l. Furthermore the wave amplitude 

is inversely proportional to the square root of base-state density (see Smith, 1979). The solution can 

be evaluated numerically and used to verify the model. 

 The vertical flux of horizontal momentum defined as 

 ' 'M u w dxρ
∞

−∞

= �  

(34)
 

where is constant with height for linear mountain waves in a uniform flow (Eliassen and Palm, 
1960). When the linear waves are hydrostatic and irrotational, hydrostatic momentum flux 

 

2
04 mM NUh

π ρ= − , (35) 

Where 0ρ  is the density and N the static stability at the ground level.  For both rotational and 

nonhydrostatic mountain waves, the vertical flux is smaller than that of hydrostatic waves (Gill, 
1982). 
 Long (1953) showed that for the special case of Boussinesq and uniform flow with constant 
static stability, the vertical displacement δ forced by a finite-amplitude mountain satisfies an 

equation that has the same form as (33).  For such a flow, the Scorer parameter l  (l=   N /U ) is also 

constant, and therefore the same Fourier transform procedure used for the linear case can again be 
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used to obtain the solution for δ. The main difficulty here is the enforcement of nonlinear lower 
boundary condition δ ( , ) ( )x z h x= . 

Instead of trying to find the analytical solution for a pre-specified mountain profile that 
satisfies the nonlinear lower boundary condition, we follow a procedure used by Durran and Klemp 

(1983) and determine a mountain profile so that the streamline given by the linear solution forced by 

the original mountain follows this new profile at the lower boundary. For a bell-shaped mountain 

originally 570 m high, the resultant mountain has a height of 503 m and the peak is shifted upstream 

by about 400 m. In essence, the modified mountain produces nonlinear responses that are equivalent 
to the linear responses produced by the original taller mountain. The new mountain profile is used in 

our nonlinear experiment (see Table 1) and the results will be compared with the analytic solution 

obtained using the procedure outlined above. 
 The ARPS is first verified against the 2-D solutions of linear mountain waves in both 

hydrostatic and nonhydrostatic flow regimes (as in Smith, 1979). In all experiments, the earth's 

rotation is neglected and an isothermal (T0 
= 250 K) uniform upstream flow (U = 20 ms-1) is 

specified. The experiments are impulsively started, i.e., the mountain is introduced into the flow at 
the initial time. The Durran and Klemp (1983) radiation lateral boundary condition option is used 

for all control experiments, and the upper boundary condition uses either Rayleigh damping or the 

wave permeable condition of Klemp and Durran (1983), a small amount of horizontal spatial 
smoothing (computational mixing) is applied only in the nonlinear run. The gravity wave modes are 

integrated on the large time step. Divergence damping is not used. 
 Three control experiments for idealized mountain waves are summarized in Table 1. For the 

parameters used here we have l-1
 ≈  1 km. In experiment LH, a = 10 km » l-1, thus the flow is 

essentially hydrostatic. In experiments LNH and NLNH, a = 2 km ~ l-1, the flow belongs to the 

nonhydrostatic regime.  

a) Linear mountain wave experiments 

 We present the model results at nondimensional (ND) times that are scaled by the advective 

time scale U0/a. Fig. 4 shows the analytical (upper panel) and model (lower panel) solutions of u' 
and w' for part of computational domain at U0t/a = 100 (Note that the mountain depicted in the 

figures has been amplified by a factor of 500 for illustration purpose and it is done for all linear 
solutions). The analytical fields were obtained by numerically integrating the integral solution using 

mid-point method (Press et al., 1989). In general, the simulated waves are slightly weaker than their 
analytical counterparts, and the error increases with height. The maximum relative error in w' is 

about 5%, while that of u' in about 14%. The phases of the waves agree very well, however. Notice 

the amplitudes of the waves increase with height due to the effect of decreasing density. 
 Vertical profiles of horizontal momentum transport by gravity wave processes are plotted in 

Fig. 5 for experiment LH, together with that from the analytical solution (bold line). These profiles 

have been scaled by the analytical flux for linear hydrostatic waves given in (34). It can be seen that 
the analytical flux is almost unity, while the simulated fluxes are about 0.97 at the surface and 

approach 0.96 at later times at the level immediately below the Rayleigh damping layer (12 km). 
This accuracy is at least as good as those reported in the literature. For example, Durran and Klemp 

(1983) reported that the flux at one vertical wavelength (z=6.4km) reached 94% of the analytical 
value at a ND time of 60 for their compressible model. A similar accuracy was also reported by Xue 

and Thorpe (1991). The improvement in accuracy obtained here can be partly attributed to higher 
vertical resolution.  
 We also performed an experiment (LHa) that is the same as LH, except that the vertical grid 

is stretched from a minimum of 20 m at the surface while keeping total number of levels the same. 
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The stretching is based on a hyperbolic tangent function as described in Xue et al. (1995). The 

momentum fluxes in Fig. 6 are even closer to unity (0.98) at the surface while the values at upper 
levels are slightly smaller, indicating that the solution accuracy is slightly sensitive to the vertical 
resolution. Another experiment (LHb) was conducted that used the wave-radiating top boundary 

condition without Rayleigh damping. In this case, the flux profile (Fig. 7) is nearly constant, with 

values being of about 96% at the surface and decreasing to 91% at the top by non-dimensional time 

140. It appears that the radiation boundary condition is working well in this case.  
 Fig. 8 shows the analytical and model simulated u' and w' fields for linear nonhydrostatic 

mountain waves from experiment LNH. Evident in the solutions are the dispersive wave trains 

downstream of the mountain peak, especially at upper levels, distinguishing them from the 

hydrostatic solutions obtained in previous experiments. The simulated wave pattern agrees quite 

well with theory, with the amplitudes being slightly smaller (as in the previous cases). Fig. 9a shows 

the model simulated isentropes after θ' has been amplified by 500 times for the purpose of 
illustration. These isentropes approximate parcel trajectories for an adiabatic, steady-state flow. It 
can be seen that the lowest isentrope intercepts the terrain because of the linear boundary forcing. In 

these simulations, the pressure field is found to be most sensitive to contamination at the lateral 
boundaries (which use an open boundary condition) in a long simulation, and it is shown in Fig. 9b 

that it remains well behaved by ND time 100.  
 The momentum flux [scaled by the hydrostatic value given by (35)] from experiment LNH 

(Fig. 10) is essentially constant at later times below the Rayleigh damping layer, with a value of 
about 0.76. This result is very close to the theoretical prediction (Klemp and Durran, 1983) for 
linear nonhydrostatic mountain waves.  

b) Nonlinear mountain waves 

 Because Long's solution requires the Boussinesq approximation, the option for this 

approximation in the ARPS is turned on. It involves replacing �  by its constant surface value after 
�  and p  are specified. We also neglect the contribution by p' to the buoyancy as well as the vertical 
advection of p  in pressure equation. These simplifications make the system of equations analogous 

to the Boussinesq equations describing an incompressible flow (the same approximations were 

made in Xue et al., 1997). Finally, the atmosphere remains isothermal and 20U =  so that the 

Score's parameter has a value similar to that in our previous experiments. 
 Fig. 11 shows the analytical solution of u' and w' (upper panel) for a 503 m high mountain 

obtained using the procedure described in Section 7.1a. The model solutions at ND time 100 are 

given in the lower panel. Since the reference state density is constant, the wave amplitude no longer 
increases with height; in fact, it decreases because significant wave energy is dispersed downstream. 
The agreement between the two solutions is very good, with the amplitudes in the numerical 
solution being only slightly weaker. 
 The simulated isentropes and perturbation pressure are shown in Fig. 12. Unlike the previous 

linear experiment (see Fig. 9), the isentrope at the surface closely follows the terrain, while the 

waves at upper levels are weaker than those in Fig. 9 for the lack of density scaling effect. The 

pressure field is again well behaved. Finally Fig. 13 shows the vertical profiles of momentum 

fluxes. These fluxes have been scaled by that of hydrostatic nonlinear mountain waves, the latter 
given by the formulation (35) for linear waves but with hm=570 m. The profile calculated from the 

analytical u' and w' from Long's equation is shown by the thick line. The simulated vertical fluxes 

overshoot at the early time due to the impulsive startup but converge toward the analytical value of 
about 0.76. This value is very close to that in experiment LNH, indicating that both linear and 

nonlinear mountain waves in the nonhydrostatic regime with al = 2 transport momentum at a rate of 
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about 76% of their hydrostatic counterparts, a result that agrees with theory (Klemp and Durran, 
1983). Furthermore, the fact that the flux is nearly constant throughout the depth of domain at later 
times indicates that the radiation top boundary condition works well even for these finite amplitude 

waves (of course the wave amplitude has been significantly reduced at upper levels due to 

downstream dispersion of energy). 

7.2. Simulation of 1972 Boulder windstorm 

 A severe windstorm developed on the lee (east) side of the Front Range of the Rocky 

Mountains was well observed and documented in Lilly and Zipser (1972) and has been a subject of 
many subsequent studies (e.g., Klemp and Lilly, 1975; Peltier and Clark, 1979; Durran, 1986). 
Recently, 2D simulations of this case with a bell-shaped mountain were conducted using 11 models 

(including ARPS) and the results intercompared (Doyle et al., 2000). Initialized with a upper-stream 

sounding taken at Grand Junction CO over an bell-shaped mountain that resembles the Front Range, 
most models were able to simulate the upper-level wave breaking and intensification of downslope 

winds reasonably well, although significant differences exist among the solutions. 
 In this paper, we report the results of our simulation using a high-resolution real terrain 

profile. The terrain profile is derived from a 3 second terrain database sub-sampled at 15 second 

intervals. The data were bilinearly interpolated to a 1 km grid after which a 1-2-1 filter is applied 

once to remove 2 grid interval terrain features. A 500km E-W cross-section through Boulder 
(40.027N) is taken and a 28 km deep domain is used. Radiation boundary conditions are used the 

top and lateral boundaries. The latter uses the Klemp and Wilhelmson (1978) formulation with a 

constant phase speed of 50 ms-1. The model is initialized with the 1200 UTC 11 January 1972 

Grand Junction CO sounding (Fig. 14), which extends up to a 28 km altitude. The sounding has a 

critical level (u=0) at the 23 km level, therefore waves are expected to be confined to below this 

level. The sounding also contains a relatively stable layer between 5 and 7 km levels, contributing to 

the intensification of downslope winds in a form of hydraulic jump flow, according to Durran and 

Klemp (1986). Most previous simulation studies of this case used significantly smoothed soundings 

with modified wind profile at the upper levels (e.g., Peltier and Clark, 1979; Durran and Klemp, 
1983). Different from Doyle et al. (2000), care is taken here to place the lowest level of observed 

sounding at the station height rather than at the sea level so as to yield a correct distance between the 

mountain peak and the tropopause (and the stable layer). The grid resolution is 1 km in the 

horizontal and 0.2 km in the vertical. The model flow is abruptly started and the control experiment 
does not include surface friction. 
 Fig. 15 shows the potential temperature contours and cross-mountain velocity fields at 3 and 

6 hours. The isentropes represent the flow trajectories reasonably well outside the regions of wave 

breaking. The most significant features seen are the descent of mid-tropospherical isentropes along 

the lee slope of the Front Range, accompanied by strong surface winds of over 70 and 80 ms-1
 at 3 

and 6 hours, respectively. The maximum surface wind reached 70 ms-1
 at 2 hours 40 minutes and 

remained above 70 ms-1
 for the rest of the simulation. The surface wind peaked 94 ms-1

 at 4 hours 

47 minutes in this simulation. The strong surface winds propagate downstream with the gust front, 
at which the flow decelerates abruptly and transitions into a subcritical flow in the form of hydraulic 

jump (Durran, 1986). Strong vertical motion is found at the front, signified by the nearly vertical 
isentropes. Above this strong surface flow and below tropopause, flow reversal (u<0) is seen shortly 

after 3 hours, resulting in flow overturning and strong mixing. Wave overturning and breaking are 

also found above the tropopause, where vertical wavelengths and amplitudes are smaller due to 

higher stability. The strongest upper-level wave activities are found to be coupled with the strongest 
tropospheric forcing at the jump, whereas activities directly above the upper-tropospheric wave-
breaking region are weak. This well mixed region acts as a critical level that, in theory, reduces the 
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vertical group velocity to zero and prevents upward transport of wave energy. The trapping of wave 

energy at the lower levels tend to accelerate the low-level flow. Further upstream, waves of 
significant amplitude are forced by lower (relative to terrain height on the lee side) ridges near 
x=200 km, and these waves propagate vertically into the stratosphere forcing significant wave 

breaking as well (not shown). These waves are sufficiently far upstream of the Front Range and do 

not appear to have significantly affected the primary wave system by 6 hours. Due to the presence of 
very weak flow at about the 23 km level, nearly all wave activities are confined below 23 km (not 
shown). The use of radiation top boundary condition does not appear critical to the lower-level 
mountain flow. 

Overall, the simulated wave system at the earlier time resembles the observation depicted in 

Figs. 4 and 5 in Klemp and Lilly (1975). The peak surface wind speed is larger than observed, 
almost certainly due to the absence of surface friction. The results are also consistent with those of 
previous simulation studies, although most of which use an idealized ridge. Our results also agree 

qualitatively well with the simulation of COAMPS reported by Dolye et al. (2000) which applied a 

smoothed real terrain. The sounding used the in latter, however, assumed height above sea level 
instead of ground level, therefore the tropopause in their case was about 1.5 km lower than reality. 
A simulation repeated using their sounding results in a result closer to their solution. Finally, the 

extra fine-scale terrain features included in the current experiment do not seem to significantly 

impact the general behavior of the downslope flow, as is supported by experiments in which small-
scale features are filtered out or when a bell shaped ridge of similar scale and height is used (not 
shown). This can also be understood by noting that the downslope flow is mainly fed by the flow 

above the 4 km level upstream. Had the terrain upstream of the Front Range been replaced by air, 
the air would be too heavy (measured by the upstream Froude number) to climb the mountain range. 
Another experiment that included parameterized surface friction (through surface drag) resulted in a 

much weaker wave system, in which the downslope winds are limited to the lee slope (not shown). 
This result is consistent with the finding of Richard et al. (1989).  

7.3. Summary 

 We presented in this section a set of idealized mountain wave experiments as well a realistic 

simulation of a severe downslope windstorm. For the former, analytical solutions that cover linear 
and nonlinear waves in both hydrostatic and nonhydrostatic flow regimes can be found. Quasi-
steady state model solutions were compared against these analytical solutions and excellent 
agreement was found. Experiments were conducted to examine solution sensitivity to vertical grid 

stretching and the top boundary condition. These experiments, as well as the simulation of a severe 

downslope windstorm, demonstrated the integrity of the dynamic and numerical framework of the 

model, in particular those aspects related to the coordinate transformation, the treatment of lower-
boundary forcing, and the top boundary conditions. 

8. Model Validation with a Nonlinear Density Current 

 In this section, we examine the model's ability to accurately handle highly nonlinear flow 

with strong interior gradients. A benchmark problem of a simple density current is chosen. Solutions 

for this problem from a number of numerical models, including those of Carpenter et al. (1990) and 

Xue and Thorpe (1991), are documented in Straka et al. (1993). Particular attention is paid to 

several options of advection schemes in the ARPS and their impact on the solution accuracy. 
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8.1. The Test Problem 

 The test consists of a 2-D density current formed from a cold blob of air descending from an 

elevated level to the ground in a neutrally stratified and initially static atmosphere. As the cold air 
reaches the ground, it spreads along the lower boundary and develops rotors along the top of the 

cold pool boundary due to Kelvin-Helmholtz instability (Fig. 16). In the spatial resolution 

experiments, the eddy-mixing coefficient is kept the same, so that the solutions may converge at 
high resolutions. 
 The base-state atmosphere is calm and has a constant potential temperature of 300 K.  An 

elliptic initial bubble is specified in terms of temperature perturbation. It is centered at x=0 km and 

z= 3 km with a vertical half-axis of 2 km, a horizontal half-axis of 4 km and a minimum temperature 

of -15 K (see Straka et al. 1993). Free-slip wall conditions are used on all four boundaries. The 

computational domain is 6.4 km deep and 25.6 km wide. Horizontal symmetry of the problem is 

exploited by centering the bubble on the left boundary. 
 Since the amount of details that can exist in the model solution are limited by the specified 

and fixed eddy mixing coefficient, it is possible to obtain a reference solution at a high resolution 

beyond which no noticeable improvement can be achieved. Such a reference solution was presented 

in Straka et al. (1993) using a compressible model with second-order advection at 25 m spatial 
resolution. We present in Fig. 16 a similar reference solution obtained using our model with fouth-
order centered spatial difference, which is essentially identical to that obtained using second-order 
scheme (not shown). Since this solution is very close to the reference solution in Straka et al. (1993, 
see their Figure 2), we will use it as our benchmark. 

8.2. The Model Results 

 We conducted a set of experiments using four options of advection schemes at 400, 200 and 

100 m spatial resolutions (Table 2). The four advection options are: 1) second-order centered; 2) 
fourth-order centered; the flux-corrected transport (FCT) (Zalesak, 1979) with second-order (3) and 

fourth-order (4) higher scheme. For the first two options, the same advection schemes were applied 

to both momentum and scalars, while for the latter two, momentum was advected by the standard 

fourth-order centered scheme. The details on these options can be found in Part I. FCT preserves the 

monotonicity but does not require positive-definiteness, it can therefore be used to advect fields 

with both signs. As a special case, a positive field will remain positive in the advective process. The 

result of using FCT in the model of Xue and Thorpe (1991) is documented in Straka et al. (1993). 
Following Straka et al. (1993), the experiments are run at 400m, 200m and 100m resolutions. At 
these resolutions, the simulated density currents are, respectively, poorly resolved, reasonably 

resolved and well resolved, measured in terms of the spatial resolution as compared to the 

characteristic flow features. The difference in the scheme performance, as will be shown, is more 

pronounced at lower resolutions. 
 Fig. 17 shows the simulated θ' fields at 900 s, using four advection options at 400 m 

resolution. The corresponding solutions using 200 m and 100 m resolutions are shown in Fig. 18 

and Fig. 19, respectively. The bottom panel of each figure is the reference solution averaged to the 

corresponding resolution. It is clear that undershooting in θ', as indicated by the minimum values, is 

occurring near the density current head in all but the FCT solutions, with the problem being most 
serious at the lowest resolution. The error is generally larger with second-order scheme than with 

fourth-order scheme. This undershoot, causing the cold pool to be too cold, is believed to be 

responsible for the faster propagation speed of the front in all these cases. 
At all resolutions, the fourth-order schemes clearly outperform the second-order 

counterparts, in defining the frontal location and in simulating the shape and location of the billows 
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(e.g., compare Fig. 17a and Fig. 17b, Fig. 18a and Fig. 18b). The FCT solutions are generally much 

better than their non-monotonic counterparts. This is evident by comparing, e.g., Fig. 17c with Fig. 
17a, and Fig. 17d with Fig. 17b. The FCT scheme not only eliminates spurious oscillations but also 

resolves the fine-scale billow structures better. At 100 m resolution, the differences in the solutions 

are smaller but are still readily identifiable, with the 4th-order and FCT options outperforming the 

others. Among all solutions, FCT4th100 in Fig. 19d compares best with the reference solution, 
agreeing with our expectation. The FCT scheme is about 3 times more expensive the conventional 
scheme of the same order, however. 

8.4. Summary 

 It has been documented in this section the behavior of four advection options in the ARPS, 
as applied to a density current for which a reference solution is obtained at much higher resolution. 
The monotonic FCT scheme clearly outperforms the regular centered difference schemes, especially 

at relatively coarse resolutions. The fourth-order option exhibits clear improvement over the lower-
order counterpart. The comparisons of these solutions with the grid-converged reference solution 

obtained using ARPS as well as with the benchmark solution in Straka et al. (1993) establishes the 

reliability of the model in handling highly nonlinear and transient solutions. 

9. Summary and Discussion 

 The design philosophy, the choice of equations and their formulations, the numerical 
integration procedures, and the parameterizations of the subgrid-scale and PBL turbulence  

processes in the ARPS have been described in this paper. The dynamical and numerical framework 

of the model is verified against known solutions of mountain waves and an observed severe 

downslope windstorm. It is also verified using a grid-converged solution of a nonlinear density 

current. The results of the latter also clearly demonstrate the superiority of a high-order monotonic 

advection scheme over conventional schemes that are commonly employed in atmospheric models.  
We believe the use of the generalized coordinate transform with horizontal stretching, the 

treatment of terms related to terrain-following coordinate for truncation error reduction, the 

formulation of conservative high-order advection terms, the implementation of monotonic advection 

for scalars, the coupling of PBL with 'free atmosphere' turbulence, the coupling of soil-vegetation 

model, surface layer, PBL and atmospheric radiation, as well as the computational implementation 

of the system have their unique aspects compared to other regional atmospheric prediction models. 
The numerical framework and the computational paradigm that have been established provide a 

solid foundation upon which future improvements can be rapidly implemented.  
It should be pointed out that only the forward time integration components of the ARPS 

model system have been described here. The complete forecast system includes real time data 

ingest, data analysis, retrieval and assimilation components (Brewster, 1996; Shapiro et al., 1996), 
the 4D adjoint based data assimilation system (Wang et al., 1995), as well as a platform-independent 
post-processing package. A complete description of these components is outside the scope of this 

paper.  
More detailed description of the coupled soil-vegetation model, the treatment of surface 

layer fluxes, the microphysics and cumulus parameterizations, and the radiation scheme used in the 

ARPS will be presented in Part II of this paper series. Additional verification experiments and an 

application of the model to the simulation of a multi-scale event containing multiple tornadic 

supercell storms and an intense long-lived squall line can also be found there. The source code and 

the online documentations of the ARPS are available at http://www.caps.ou.edu/ARPS. 
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Appendix A. Definition of symbols 

Cp Specific heat of dry air at constant pressure (J kg-1
 K-1); 

sc  

1/ 2( )sc RTγ= , the full acoustic wave speed (m s-1); 

Cv Specific heat of dry air at constant volume (J kg-1
 K-1); 

Dij Deformation tensors (s-1); 

f,
~
f  Coriolis parameters. f=2Ω sin(φ) and 

~
f =2Ω cos(φ) (s-1) where φ is the earth latitude; 

g Acceleration due to gravity (m s-2 ); 
Hj Turbulence heat or moisture fluxes (kg K m-2

 s-1); 

J1, J2, J3, J4, G  Coordinate transformation Jacobians (ND); 

κ,  

1
d pR C−

 

,m hK K  Turbulence mixing coefficient for momentum and scalars, respectively (m2
 s-1); 

l Turbulent mixing length (m); 
L Latent heat of evaporation; 
m Map projection factor (ND); 
N Dry or moist Brunt-Väsäilä frequency, depending on local static stability  (s-1);  

p, p p, '  Total, base-state and perturbation pressure (Pascal); 
Pr Turbulent Prandtl number (ND); 
q Generic form of water vapor and other hydrometeor species (kg kg-1); 
Q�  Adiabatic heating rate (K s-1); 
qh Hail/grapaul mixing ratio (kg kg-1); 
qi Cloud ice mixing ratio (kg kg-1); 
qli Total liquid and ice water mixing ratio (kg kg-1); 
qr Rain water vapor mixing ratio (kg kg-1); 
qs Snow mixing ratio (kg kg-1); 
qv Water vapor mixing ratio (kg kg-1); 
qvs Saturation water vapor mixing ratio (kg kg-1); 
Rd Gas constant for dry air (J kg-1

 K-1); 
Rv Gas constant for water vapor (J kg-1

 K-1); 
T, T T, '  Total, base-state and perturbation temperature (K); 
u, v, w Cartesian velocity components in x, y and z directions (m s-1); 
Uc, Vc, Wc

 Contravariant velocity compoments in ξ, η and ζ directions (m s-1); 
x, y, z Cartesian coordinates (m); 
Ω Angular rotation rate of the earth (s-1); 
γ Rd/Rv; 
π, Π, π' Total, base-state and perturbation Exner function. π ≡ (p/p0)

Rd/Cp
 and p0=105

 Pascal; 
θe Equivalent potential temperature (K); 

θ, � �, '  Total, base-state and perturbation potential temperature (K); 

ρ∗
 � G  (kg m-3); 

ρ, � �, '  Total, base-state and perturbation density (kg m-3); 

τij Stress tensors (kg m-1
 s-2); 

ξ, η, ζ  Coordinates in the computational space corresponding to x, y and z (m); 
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Appendix B. The vertically implicit solution of the p and w equations 

 When coefficient β is not zero, Eqs. (3.4c) and (3.4d) become simultaneous equations for 
two unknowns, w� ���

 and p'� ���
 and can not be solved independently. 

 After regrouping the unknown terms, we rewrite the p-equation (3.4d) as 

 p p g w c x y G w Fs p' ' /� � � �
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 Substituting p' τ+∆τ
  in (B1) into w-equation (3.4c) and regrouping again yields 
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where the known terms on the RHS are grouped into Fw , which is 
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 Eq. (B2) now has only one unknown, wτ+∆τ , and the spatial averaging and differencing are 

all performed in the vertical direction. Expressing the equation in an explicit finite difference form 

yields a set of linear algebraic equations for w� ���
 at three adjacent vertical levels: 

 A w B w C w Dk k k k k k k�

� �

�

�
� � �1 1

� � � � � �� � � , (B3) 
where k is the index for vertical levels, and the known coefficients Ak, Bk, Ck and Dk are  
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2 22 , N x yk � ( ) ( )*
� ��� � �� �

�
2 , M gk � � / 2 , and L c Gk s� � �2 ( )� .  

 Equation (B3) forms a linear tridiagonal equation system and is solved using the Thomas 
algorithm (e.g., Richtmyer and Morton, 1967) given upper and lower boundary conditions on w. For 
a rigid top, w = 0. For the radiation top boundary, the inverse transform of (D4) in Appendix D is 
used as the condition. At the surface, w is obtained from the nonpermeable condition that requires 

the flow to be parallel to the ground. Finally, the wτ+∆τ is substituted into Eq.(B1) to obtain p'τ+∆τ, 
thus complete one small time step integration cycle. 
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Appendix C. Second- and fourth-order centered advection formulation for u, v, w, and p' 

 The second- and fourth-order advection for θ was given in EQ.(30). We present here the 

formulations of ADVU, ADVV, ADVW, and ADVP for the advection of u, v, w, θ' and p'. 

 

   
ADVU = λ m U*ξδξ u

ξ
+ V*ξ δηu

η
+ W*ξδζu

ζ

+ (1–λ ) m U*2ξδ
2ξ u

2ξ
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2ηu
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2ζu

2ζ
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ADVW = λ m U*ζδξ w

ξ
+ V*ζ δηw

η
+ W*ζδζw

ζ

+ (1–λ ) m U*ζξδ
2ξ w
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   ADVP = λ m G
ξ
U cδξ p'

ξ
+ G
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η
+ G

ζ
W c δζ p'
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ξ
U c
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η
V c

η
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ζ
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2ζ
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 It can be shown that the above advection formulation (M. Xue and S. J. Lin – unpublished 
note 1991) for both second and fourth-order cases, exactly conserves the total kinetic energy and the 
total variance of the advected scalars if the mass continuity equation differenced using consistent 
second or fourth-order difference scheme is exactly satisfied. Under the same condition, it also 
conserves the global integral of the advected quantities themselves (e.g., domain integrated 
momentum). 

Appendix D. Implementation of radiation top boundary condition 

 The Klemp and Durran (1983) type wave-permeable (radiation) upper boundary condition is 
implemented in the ARPS. The method is based on an analysis of linear hydrostatic mountain 

waves. By requiring the downward energy transport by hydrostatic gravity waves to be zero, the 
following relationship between the Fourier transformed amplitudes of w and p' at the top boundary 
can be obtained: 
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where N is the Brunt-Väisälä frequency and k k kx y� �
� �2 2  is the horizontal wavenumber with 
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�
 being the discretized approximations to 

wavenumbers kx and ky in x and y directions, respectively. In Eq.(D1), �pnz�2  is located one-half grid 

level below the top boundary, while wnz-1 is located at the boundary. In the derivation, it is assumed 

that the horizontal variation in the base-state, and hence, in the coefficients of the equation, is small 
and can be neglected. Further, �pnz�2  is approximated to be the value at the w point. 
 Equation (B1) in Appendix B can be rewritten for level k=nz-2 as 

 p a w b w cnz nz nz'
� � �

� � �2 1 2  (D2) 
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� . Note that we 

have dropped the superscript � �� �  for convenience. Performing a double Fourier transform on 

(D2), and assuming that the coefficients are slowly varying functions of x and y, Eq.(D2) becomes 

 � � �p a w b w cnz nz nz� � �

� � �2 1 2 . (D3) 

Eliminating �pnz�2  from (D1) and (D3) yields  

 a
N

k
w b w cnz nz�

F
HG

I
KJ � � �

� �

�
� �1 2 0   (D4) 

which, after being transformed back into the physical space, serves as the top boundary condition 
required by (B3). The pressure at the top boundary is then obtained from Eq.(D2). 
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Table 1. List of mountain wave experiments 

 

 
Experiment Parameters

 
Linear 

hydrostatic 
(LH) 

Linear 
nonhydrostatic 

(LNH) 

Nonlinear 
nonhydrostatic 

(NLNH) 

Boulder 
Windstorm 

(WSTORM) 
hm (m)  1 1 503 Real terrain 

a (m) 10000 2000 2000 N.A. 
∆x (m) 2000 400 400 1000 

∆z (m) 125 125 125 200 

L  (domain width, km) 576 460 460 512 

H (domain depth, km) 24 24 24 28 

∆t  (s) 20 10 5 2.5 

∆τ  (s) 5 1 1 2.5 

Rayleigh damping 
coefficient (1/s) 

0.0015 0.0015 N.A. N.A. 

Height damper starts (km) 12 12 N.A. N.A. 
4th-order horizontal 

mixing coefficient (1/s)  
0 0 3×10-5 8×10−4 

 

Table 2. List of density current experiments 

Spatial resolution (m) Advection scheme 

400  200 100 

2nd-order-centered 2nd400 2nd200 2nd100 

4th-order-centered 4th400 4th200 4th100 

2nd-order FCT FCT2nd400 FCT2nd200 FCT2nd100 

4th-order FCT FCT4th400 FCT4th200 FCT4th100 
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List of Figures 

 

Fig. 1. Principal elements of the ARPS model system. These include the ARPS data assimilation 
system (ARPSDAS), the forward prediction component and the post-processing tools used for 
product generation and forecast verification. ARPSDAS further includes the data ingest and 
analysis component known as the ARPS data analysis system (ADAS), Doppler radar data 
retrieval algorithms and the 4-D variational data assimilation system. 

Fig. 2. A schematic depicting the staggering of variables on a grid box. The derived quantities are 
located so as to minimize spatial averaging in the finite difference calculations. 

Fig. 3. An illustration of ARPS computational grid based on the coordinate transformation relation 
(2) with a hyperbolic-tangent stretching function in the vertical as described in Xue et al 
(1995). In this example, the grid intervals increases with height and the coordinate surfaces 
become flat above the 7 km level. The formulation of equations also allows stretching in the 
horizontal directions. 

Fig. 4. Analytical solution of u' and w' (upper panel) and the model simulated solution at the ND 
time of 100 from experiment LH (lower panel), which is for linear hydrostatic mountain waves 
over a 1 m high bell-shaped mountain with a 10 km half width. Note that the mountain profile 
in thick line has been amplified by a factor of 500 for illustration purpose. 

Fig. 5. Vertical profiles of horizontal momentum at indicated ND times from experiment LH, along 
with the profile calculated from analytical solutions of u' and w' (thick line). All profiles are 
normalized by the theoretical value for linear irrotational hydrostatic waves in (35). 

Fig. 6. Same as Fig. 3, except for experiment LHa, in which a vertically stretched grid is used. 

Fig. 7. Same as Fig. 3, except for experiment LHb, in which Klemp and Durran (1983) radiation 
boundary condition is applied at the top boundary without a Rayleigh damping layer. 

Fig. 8. Analytical solution of u' and w' (upper panel) and model simulated solution at the ND time of 
100 from experiment LNH (lower panel), which is for linear nonhydrostatic mountain waves 
over a 1 meter high bell-shaped mountain with a 2 km half width. As in Fig. 3, the mountain 
profile has been amplified by a factor of 500. 

Fig. 9. Simulated isentropes (a) and perturbation pressure (b) at the ND time of 100 from 
experiment LNH, which is for linear nonhydrostatic mountain waves. The depiction of the 
potential temperature perturbation has been amplified by a factor of 500, as has the mountain 
profile. 

Fig. 10. Same as Fig. 4, except for experiment LNH, which is for linear nonhydrostatic mountain 
waves. 

Fig. 11. Analytical solution of u' and w' (upper panel) and model simulated solution at the ND time 
of 100 from experiment NLNH (lower panel) which is for finite-amplitude (nonlinear) 
nonhydrostatic mountain waves over a 503 meter high mountain whose profile satisfies δ (z=h) 
= h, where δ  is the solution of Eq.(33) for a bell-shaped mountain with a 2 km half width. The 

mountain profile in thick line has its peak shifted upstream by about 400 m from the peak of 
original bell-shaped mountain. 
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Fig. 12. Simulated isentropes (a) and perturbation pressure (b) at the ND time of 100 from 
experiment NLNH, which is for nonlinear nonhydrostatic mountain waves. 

Fig. 13. Same as Fig. 4, except for experiment NLNH, which is for nonlinear nonhydrostatic 
mountain waves. 

Fig. 14. 1200 UTC, 11 Jaunary 1972 Grand Junction, CO sounding used in the Boulder downslope 
windstorm simulations. 

Fig. 15. Isentropes (left panel) and u field (right panel) at hour 3 and 6 of the 2D simulation of 
downslope windstorm using Grand Junction, CO sounding of 1200 UTC, 11 January 1972 and 

a high-resolution east-west terrain profile through Boulder, CO. Regions between θ=296K and 

316K one the left and where u � 30 ms-1
 are shaded. Only a portion of the 512×28 km 

integration domain is shown. 

Fig. 16. θ' contours from the 25 m resolution reference simulation, at (a) 0, (b) 600, and (c) 900 s. 
Contour interval is 1°C. Only a portion of the 25.6×6.4 km2

 domain is shown. The figure 
shows that an oval shaped initial cold blob drops to the ground and spread along the ground in 
the form of density current. Kelvin-Helmholtz billows develop along the upper surface the cold 
pool. 

Fig. 17. Fields of θ' at 900 s from the 400 m resolution experiments (a) 2nd400, (b) 4th400, (c) 
FCT400, (d) MP400 and (e) the 25 m reference run. The reference solution has been averaged 
to the 400 m grid. 

Fig. 18. As in Figure 13, but for the set of 200 m resolution experiments. 

Fig. 19. As in Figure 13, but for the set of 100 m resolution experiments. 
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Fig. 2. A schematic depicting the staggering of variables on a grid box. The derived 
quantities are located so as to minimize spatial averaging in the finite difference 
calculations. 
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Fig. 3. An illustration of ARPS computational grid based on the coordinate 
transformation relation (2) with a hyperbolic-tangent stretching function in the 
vertical as described in Xue et al (1995). In this example, the grid intervals increases 
with height and the coordinate surfaces become flat above the 7 km level. The 
formulation of equations also allows stretching in the horizontal directions. 
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Fig. 4. Analytical solution of u' and w' (upper panel) and the model simulated solution at the ND 
time of 100 from experiment LH (lower panel), which is for linear hydrostatic mountain waves over 
a 1 m high bell-shaped mountain with a 10 km half width. Note that the mountain profile in thick 
line has been amplified by a factor of 500 for illustration purpose. 
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Fig. 5. Vertical profiles of horizontal momentum at indicated ND times from experiment LH, along 
with the profile calculated from analytical solutions of u' and w' (thick line). All profiles are 
normalized by the theoretical value for linear irrotational hydrostatic waves in (35). 
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Fig. 6. Same as Fig. 4, except for experiment LHa, in which a 
vertically stretched grid is used.  
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Fig. 7. Same as Fig. 4, except for experiment LHb, in which 
Klemp and Durran (1983) radiation boundary condition is 
applied at the top boundary without a Rayleigh damping 
layer. 
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Fig. 8. Analytical solution of u' and w' (upper panel) and model simulated solution at the ND time 
of 100 from experiment LNH (lower panel), which is for linear nonhydrostatic mountain waves over 
a 1 meter high bell-shaped mountain with a 2 km half width. As in Fig. 4, the mountain profile has 
been amplified by a factor of 500. 
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Fig. 9. Simulated isentropes (a) and perturbation pressure (b) at the ND time of 100 from 
experiment LNH, which is for linear nonhydrostatic mountain waves. The depiction of the potential 
temperature perturbation has been amplified by a factor of 500, as has the mountain profile. 
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Fig. 10. Same as Fig. 5, except for experiment LNH, which is for 
linear nonhydrostatic mountain waves.  

-6.4 0.0 6.4 12.8 19.2
0.0

2.0

4.0

6.0

8.0

10.0

12.0

Min=-8.25     Max= 8.60     Inc= 1.00    

Analytic solution of u’ (m/s)

-6.4 0.0 6.4 12.8 19.2
0.0

2.0

4.0

6.0

8.0

10.0

12.0

Min=-4.03     Max= 3.23     Inc=0.500    

Analytic solutoin of w’ (m/s)

-6.4 0.0 6.4 12.8 19.2
0.0

2.0

4.0

6.0

8.0

10.0

12.0

Min=-7.87     Max= 8.40     Inc= 1.00    

Simulated u’ (m/s) at T=100.0

-6.4 0.0 6.4 12.8 19.2
0.0

2.0

4.0

6.0

8.0

10.0

12.0

Min=-4.02     Max= 3.22     Inc=0.500    

Simulated w’ (m/s) at T=100.0

 

Fig. 11. Analytical solution of u' and w' (upper panel) and model simulated solution at the ND time 
of 100 from experiment NLNH (lower panel) which is for finite-amplitude (nonlinear) 
nonhydrostatic mountain waves over a 503 meter high mountain whose profile satisfies δ (z=h) = h, 
where δ  is the solution of Eq.(33) for a bell-shaped mountain with a 2 km half width. The 

mountain profile in thick line has its peak shifted upstream by about 400 m from the peak of 
original bell-shaped mountain. 
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Fig. 12. Simulated isentropes (a) and perturbation pressure (b) at the ND time of 100 
from experiment NLNH, which is for nonlinear nonhydrostatic mountain waves. 
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Fig. 13. Same as Fig. 5, except for experiment NLNH, which is for 
nonlinear nonhydrostatic mountain waves. 
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Fig. 14. 1200 UTC, 11 Jaunary 1972 Grand Junction, CO sounding used 
in the Boulder downslope windstorm simulations. 
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Fig. 15. Isentropes (left panel) and u field (right panel) at hour 3 and 6 of the 2D simulation of 
downslope windstorm using Grand Junction, CO sounding of 1200 UTC, 11 January 1972 and a 

high-resolution east-west terrain profile through Boulder, CO. Regions between θ=296K and 316K 

one the left and where u � 30 ms-1
 are shaded. Only a portion of the 512×28 km integration domain 

is shown. 
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Fig. 16. θ' contours from the 25 m resolution 
reference simulation, at (a) 0, (b) 600, and (c) 
900 s. Contour interval is 1°C. Only a portion of 
the 25.6×6.4 km2

 domain is shown. The figure 
shows that an oval shaped initial cold blob 
drops to the ground and spread along the ground 
in the form of density current. Kelvin-
Helmholtz billows develop along the upper 
surface the cold pool. 
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Fig. 17. Fields of θ' at 900 s from the 400 m 
resolution experiments (a) 2nd400, (b) 4th400, 
(c) FCT400, (d) MP400 and (e) the 25 m 
reference run. The reference solution has been 
averaged to the 400 m grid. 

 



 

0.0 3.2 6.4 9.6 12.8 16.0
0.0

0.4

0.8

1.2

1.6

2.0

2.4
Min=-16.6 Max=0.471 Inc=1.0 

0.0 3.2 6.4 9.6 12.8 16.0
0.0

0.4

0.8

1.2

1.6

2.0

2.4
Min=-16.6 Max=0.494 Inc=1.0 

0.0 3.2 6.4 9.6 12.8 16.0
0.0

0.4

0.8

1.2

1.6

2.0

2.4
Min=-9.77 Max=0.0   Inc=1.0

0.0 3.2 6.4 9.6 12.8 16.0
0.0

0.4

0.8

1.2

1.6

2.0

2.4
Min=-9.37 Max=0.0   Inc=1. 

0.0 3.2 6.4 9.6 12.8 16.0
0.0

0.4

0.8

1.2

1.6

2.0

2.4
Min=-9.48 Max=0.   Inc=1.0 

θ'

2nd200

θ'

REF200

θ'

FCT2nd200

θ'

4th200

θ'

FCT4th200

(d)


(a)


(b)


(c)


(e)


 
 

Fig. 18. As in Fig. 17, but for the set of 200 m 
resolution experiments. 
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Fig. 19. As in Fig. 17, but for the set of 100 m 
resolution experiments. 


