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Summary

A completely new nonhydrostatic model system known as the Advanced Regional
Prediction System (ARPS) has been developed in recent years at the Center for Anaysis and
Prediction of Storms (CAPS) at the University of Oklahoma. The ARPS is designed from the
beginning to serve as an effective tool for basic and applied research and as a system suitable for
explicit prediction of convective storms as well as weather systems at other scales. The ARPS
includes its own data ingest, quality control and objective analysis packages, a data assimilation
system which includes single-Doppler velocity and thermodynamic retrieval agorithms, the forward
prediction component, and a self-contained post-processing, diagnostic and verification package.

The forward prediction component of the ARPS is a three-dimensiona, nonhydrostatic
compressible model formulated in generdlized terrain-following coordinates. Minimum
approximations are made to the origina governing equations. The split-explicit scheme is used to
integrate the sound-wave containing equations, which alows the horizontal domain-decomposition
strategy to be efficiently implemented for distributed-memory massively paralel computers. The
model performs equally well on conventional shared-memory scalar and vector processors. The
model employs advanced numerical techniques, including monotonic advection schemes for scalar
transport and variance-conserving fourth-order advection for other variables. The model aso
includes state-of-the-art physics parameterization schemes that are important for explicit prediction
of convective storms as well as the prediction of flows at larger scales.

Unique to this system are the consistent code styling maintained for the entire model system
and thorough interna documentation. Modern software engineering practices are employed to
ensure the system is modular, extensible and easy to use.

The system has been undergoing real-time prediction tests at the synoptic through storm
scalesin the past several years over the continental United States as well asin part of Asia, some of
which included retrieved Doppler radar data and hydrometeor typesin the initial condition.

As the first of a two-part paper series, we describe herein the dynamic and numerical
framework of the model, together with the subgrid-scale turbulence and the PBL parameterization.
The model dynamic and numerical framework is then verified using idealized and realistic mountain
flow cases and an idealized density current. Other physics parameterization schemes will be
described in Part I, which is followed by the verification against observational data of the coupled
soil-vegetation model, surface layer fluxes and the PBL parameterization. Applications of the model
to the ssimulation of an observed supercell storm and to the prediction of areal case are also found in
Part Il. In the latter case, along-lasting squall line developed and propagated across the eastern part
of the United States following a history number of tornado outbreak in the state of Arkansas.



1. Introduction

Three-dimensiona nonhydrostatic modeling of atmospheric convection started in the mid-
1970s (e.g., Steiner, 1973; Miller and Pearce, 1974; Schlesinger, 1975; Tapp and White, 1976;
Clark, 1977; Klemp and Wilhelmson, 1978), following the success of earlier 2-D modeling studies
that used nonhydrostatic equations in either primitive form (Lilly, 1962) or vorticity form (Orville,
1968). These and other studies significantly advanced our understanding of thunderstorm dynamics
(Lilly, 1979; Klemp, 1987) as well as other small-scale phenomena. However, modeling research
on the storm-scale (defined here loosely as the scale a which non-hydrostatic dynamics are
important and attention is paid to individual storm elements, e.g., updrafts and downdrafts)
remained in the ssmulation mode for much of the last two decades. These simulations typically used
horizontally homogeneous initial conditions with artificial perturbations to initiate convection.

Two major developments in the recent years provided the impetus for moving from a mode
of convective storm simulation to one of prediction. The first is the deployment of about 160
Doppler radars (Crum and Albert, 1993) in the U. S. that provides nearly continuous single-Doppler
coverage of spatial and temporal scales relevant to storm prediction. The second concerns with
techniques for retrieving unobserved quantities from single-Doppler radar data to yield a consistent
set of mass and wind fields appropriate for initializing a storm-scale prediction model (e.g., Kapitza,
1991; Liou et a., 1991; Sun et al., 1991; Qiu and Xu., 1992; Shapiro et al., 1995; Sun and Crook,
1994). Perhaps equally important for the realization of numerical weather prediction (NWP) on the
storm scale is the advent and accessibility of increasingly more powerful parallel-processing
supercomputers.

In 1989, the Center for Analysis and Prediction of Storms was established at the University
of Oklahoma as one of the National Science Foundation’s first 11 Science and Technology (S&T)
Centers. Its formal mission is to demonstrate the practicability of storm-scale numerical weather
prediction and to develop, test, and validate a regional forecast system appropriate for operational,
commercial, and research applications. Its ultimate vision is to make available a fully functioning
stormscale NWP system around the turn of the century (Lilly, 1990; Droegemeier, 1990).

Central to achieving this goa is an entirely new three-dimensional, nonhydrostatic model
system known as the Advanced Regiona Prediction System (ARPS). It includes a data ingest,
quality control, and objective analysis package, a single-Doppler radar parameter retrieval and
assimilation system, the prediction model itself, and a post-processing package. These components
areillustrated in Fig. 1.

In planning for its development, the ARPS was required to meet a number of criteria. First, it
had to accommodate, through various assimilation strategies, new data of higher tempora and
gpatial density (e.g., WSR-88D data) than had traditionally been available. Second, the model had to
serve as an effective tool for studying the dynamics and predictability of storm-scale weather in both
idealized and more realistic settings. It must aso handle atmospheric phenomena ranging from
regional scales down to micro-scales as interactions across this spectrum are known to have
profound impacts on storm-scale phenomena. These needs required that the model have a flexible
and general dynamic framework and include comprehensive physical processes. The system should
also run efficiently on massively parallel computers. In short, it was our goal to develop a model
system that can be used effectively for both basic atmospheric research and operational numerical
weather prediction, on scales ranging from regional to micro-scales.

In section 2 of this paper, we will describe the dynamic framework of the forward prediction
component of the ARPS system. We will describe in section 3 severa options of subgrid-scale
turbulence parameterization together with a 1.5-order turbulent kinetic energy (TKE)-based



planetary boundary layer (PBL) parameterization scheme. Other physics parameterizations will be
detailled in Part Il (Xue et a., 2000) and will be briefly outlined in section 4. The numerica
treatment of various processes in the model is presented in section 5 with additional details found in
the Appendices. Section 6 discusses the computational aspects of the model, and Sections 7 and 8
verify the dry dynamics of the model using mountain flows and a nonlinear density current.
Summary isfound in section 9.

2. Dynamics Equations
2.1. Historical perspective

Three-dimensiona nonhydrostatic models can be divided into two broad categories: those
containing fast acoustic modes (Tapp and White, 1976; Klemp and Wilhelmson, 1978, KW
hereafter) and those that filter such modes via certain type of anelastic approximation (Miller and
Pearce, 1974; Schlesinger, 1975; Clark, 1977; Xue and Thorpe, 1991). For the former, commonly
referred to as compressible models, the acoustic waves must be treated in special ways to attain
computational efficiency. Tapp and White (1976) used a semi-implicit integration scheme that is
absolutely stable for linearized sound waves, while Klemp and Wilhelmson (1978) employed a
mode-splitting technique where the acoustic waves and slow modes are integrated separately using
different time steps. In the latter case, the vertical acoustic modes are usually treated implicitly to
remove the time step limitation from these modes due to the Courant-Fredrichs-Lewy (CFL)
stability condition.

In the anelastic (sound-proof) models, a prognostic equation for pressure (or aternatively
density) is absent, and the pressure (or geopotential height in pressure-based coordinates) has to be
diagnosed from an éliptic equation derived from the equations of motion. In order to filter out
acoustic modes, certain approximations have to be made (see, e.g., discussion by Durran, 1989).

The mode-splitting technique has gained considerable popularity since KW because of its
simplicity and effectiveness (Tripoli and Cotton, 1982; Chen, 1991; Tripoli, 1992; Dudhia, 1993;
Hodur, 1997). An attractive feature of models using this approach is that all computations are local
to the grid points involved in the finite difference stencil, making their implementation on
distributed-memory paralel processor (PP) computers straightforward through the use of domain
decomposition strategies (Johnson et a., 1994; Droegemeier et a., 1995b). Different from anelastic
systems, the compressible system of equations does not have to make any approximation, making it
suitable to awider range of applications.

The semi-implicit method used by Tapp and White (Tapp and White, 1976) for compressible
systems has in recent years been adopted by other models (Tanguay et al., 1990), and has been
further extended to include linear gravity wave modes (Cullen, 1990) so as to remove its time step
limitation. Because of its absolute stability with respect to modes treated implicitly, this method is
often combined with semi-Lagrangian advection schemes (Tanguay et a., 1990; Golding, 1990) to
achieve high computational efficiency. In practice, however, the efficiency of such schemes has to
be considered together with solution accuracy. For example, it is known that implicit schemes
distort (slow down) gravity waves when used with large time steps (Tapp and White, 1976). Semi-
implicit systems usually involve solving a global elliptic equation, making their efficient
implementation on distributed-memory parallel computers less straightforward.

Based on the above considerations, we choose to use a fully compressible system of
equations and solve them using the * split-explicit’ time integration method.



2.2. The governing equations of ARPS

The governing equations of the ARPS include conservation equations for momentum, hest,
mass, water substance (water vapor, liquid and ice), subgrid scale (SGS) turbulent kinetic energy
(TKE), and the equation of state of moist air. Among the three state variables, i.e., temperature,
pressure and density, prognostic equations for two of them are needed and the third variable can be
diagnosed from the equation of state.

For the temperature, modelers usually choose between temperature (e.g., Dudhia, 1993), and
potential temperature(e.g., KW). Some modelers favor ice-liquid potential temperature (e.g., Tripoli
and Cotton, 1981). In the ARPS, we choose to predict potential temperature and pressure then
diagnose density. The potential temperature is chosen because it is conservative for adiabatic
processes. The ice-liquid potential temperature is supposed to be conserved even in the presence of
phase changes, but its definition involves approximations.

For the pressure equation, modelers again have the choice of using pressure or Exner
function as the prognostic variable. Most existing compressible models predict the Exner function
instead of pressure (e.g., Klemp and Wilhelmson, 1978; Tapp and White, 1976), but we choose to
predict pressure. In such a case, the pressure gradient force (PGF) is written as in the origina
Navier-Stokes equations (e.g., Batchelor, 1967), so that a fully conservative form of the momentum
(not velocity) equations can be formulated, both analytically and numerically.

The ARPS governing equations are first written in a Cartesian coordinate projected onto a
plane tangent to or intercepting the earth's surface. Using standard mathematical relations (Haltiner
and Williams, 1980) for the transformation from a local Cartesian space on the sphere to map
projection space, we obtain the following equations of motion:

U=-mppt+(f+f )v—fw—uwa+F,, (1a)
v=—mp,pt—(f+f )u—wa'+F,, (1b)
W=-p,pt-g+ fu+W+v¥)a’+F,. (1)

In the above and in the equations to follow, the dot operator denotes the total time derivative, e.g.,
U=du/dt, and subscripts t, x,y, z, £, nand { denote partial tempora or spatial derivative, eg.,
u, = du/dx. In obtaining (1a-c), no approximation is made other than that the ellipticity of the earth
is neglected and the atmosphere is assumed to be thin so that the radius is replaced by the mean
earth radius at the sea level a. Note that the spatia derivatives of map factor due to curvature are
retained in f =um, —vm, +utan(¢)/a, as are the Coriolis terms due to vertical motion (those

involving f ). The definitions of other symbols are found in Appendix A. Note that for this system,

only gravitational, pressure gradient and frictional forces (F terms) can change kinetic energy. All
other terms cancel each other in the kinetic energy equation.

The equations of state for moist air (see Dutton, 1986), mass continuity, heat energy
conservation, and conservation of hydrometeor species are, respectively,

p=pRT)[1-q,(e+a,)" |1+, +q), (1d)
p:—p{mz[(u/m)x+(v/m)y]+wz}, (1e)
6=Q(C,7)™, (1f)
q=S5. (19)

Here Q denotes heat source, and &, represents sources due to moist processes.



2.3. The curvilinear coordinate system

The actual equations of the ARPS are written in a curvilinear coordinate system (&, 7, )

defined by

&=&(x), n=mn(y), andg={(x,y,2). (2

This coordinate system is a special case of the fully three-dimensional curvilinear system since
constant surfaces of £ and 7 remain parallel to those of constant x and y, respectively. The vertical
transformation allows grid stretching and ensures that the lower boundary conforms to the terrain.
The horizontal transformation allows horizontal grid stretching. Egs.(2) represent a transformation
that maps a domain with stretched grid and irregular lower boundary to aregular rectangular domain
with equal grid space in each direction. We call the latter the computational domain.

The governing equations for fluid motion in a fully 3-D curvilinear system can be found in
Thompson et al. (1985), Sharman et a. (1988) and Shyy and Vu (1991). Following their work, we
use the Cartesian instead of the contravariant velocity components as the basic dependent variables.
As shown in Sharman et a. (1988), the Cartesian velocity components u, v and w can be expressed
as functions of the contravariant velocities U¢, V¢ and WE and vice versa. For the transformation
defined by (2), which is a special case of the fully 3-D curvilinear transformation, we have

Uc=ul,//G= u/x., V° :vJ4/\/6=v/y,7,and W = (ud; + v, +wx§y,7)/\/5, (3)
where

J=-2y,J,=-2X%, J3=2Y,,J),=2 %, and VG = Z:X:Y, - 4
J,, J,, J,and J, are Jacobians of transformation and +/G is the determinant of the Jacobian matrix

of transformation from the (&, 7, {) system to the (x, y, 2) system. It is clear that UC differs from u by
a factor of xg which is the grid stretching factor in the x-direction. The same is true in the y

direction. The formula for WE is more complicated because this component is not orthogonal to the
other velocity components.

The transformation relations for spatial derivatives from (x,y,2) to (&, n, {) coordinates are
0, =[(39). +(39),|/VG, 9,=(3,9),+(3.9),]/G, and 0.=(xy,9),/NG. ()

Most terrain-following coordinate models (e.g., Clark, 1977; Pielke and Martin, 1981)
define the coordinate transform therefore the transformation Jacobians analytically. In the ARPS,
the computational grid is defined numerically and therefore can be arbitrary. The Jacobians are
calculated numerically according to (4). This allows for additional flexibility, in fact, the grid can be
made time dependent (Fiedler et al., 1998). The only requirement for the grid generation is that the
lowest grid level conforms to the terrain. Severa built-in options for creating the computational grid
with optional stretching are available in the model. They allow for easy setup of, for example, quasi-
uniform vertical levels at the lower and upper levels, and stretched levels in-between. One can aso
choose to flatten the coordinate surfaces above a certain height, so that the error associated with
calculating horizontal gradients (e.g., in horizontal PGF terms) in a non-orthogona grid is
eliminated there. Fig. 3 shows an example of this generalized terrain-following coordinate in which
the vertical grid is stretched and the coordinate levels become flat at a given height.

2.4. Final Model Equations

Following the practice of most non-hydrostatic atmospheric models (e.g., Clark, 1977;
Dudhia, 1993), we divide the atmospheric state variables into the base-state (reference state) and the
deviation

p=0(2)+¢".



The base-state is intentionally chosen to be independent of x and y so that explicit evaluation of its
horizontal gradient in the (§, n, {) coordinate is avoided. This eliminates the usualy large
cancellation errors associated with such calculations. The need to solve the perturbation equations
for vertical acoustic waves implicitly is another reason for defining the reference state. As will be
seen later, as long as we retain high-order perturbation terms, the actual choice of the base state has
little effect on the final solution.
The base state is required to satisfy the hydrostatic relation:
p.=-p3, (6)
where p isthe base-state density that contains the effect of base-state water vapor.
For convenience of notation, we define the following:
P =pJG, U '=pU°, V =pVeand W =p'W°. 7)
The final prognostic equations in the ARPS are obtained by transforming Egs.(la-g) into the

curvilinear coordinate using relations given in the previous section. In addition, there is an equation
for the sub-grid scale turbulent kinetic energy (TKE) E:

(p'0)+mp o[ 35(p=0, DV) | +[ (P DIV) ] | =

: (89)
~ ADV(u)+p'[(f + f,)v— f w]-uwa™+/GD,,
(p*v)t + mﬁp‘l{[J4( p'—oc,,Div*)]n +[J2( p'—oc,,Div*)]C} = (@)
—~ADV(V)-p (f + f_)Ju—wa*++/GD,,
(p'W), + 207 [ %Y, (P~ DIV) |, + gpp™'p" [p(rP) " -087 = ()
— ADV(W)+gpp o' B'+ p fu+ (U +v¥)a*+/GD,,
() ~NGpams () <(fGeme) spdow)
—{m[\/EU “p.+/GVE p'n}+\/6W° p'§}+\/6,5c§ [é 0+ AA’l],
(0'6) +p Wb, =—ADV(8) +7JGD, +/GS, (8e)
(p'a), =—ADV(q)+(p*qu/Z§)§+\/aDq +4GS,, (8f)
(P'E), = —ADV(E)+C+p*[Km|Def ?-2/3E Div]—p*CgI‘lEm +2/GD, (8g)
where the advection operator ADV(¢) is defined as
ADV (g)=m[U" ¢, +V" ¢, |+W'¢,
N o . -, ()
=t | (Ugm* ), +(Vigm* ) |+(W'g), ~9/G Div
and the density weighted divergence Div' is defined as
Div =V-(pV) :llx/E{m2 [(U*ml)§ + (V*m’l))7 }+W*§} . (10)

2.5. Discussion of the Equations

In vertical momentum equation (8c), B' includes the contributions of water species and
second order perturbation pressure and temperature to the buoyancy:



1 1 12 12 1At
B= qv__qv+gn_§_2_1 7P, H_p__ (12)
e+q, 1+q, 6° 2y° p° 2y0p
Retaining the second-order terms minimizes the impact of approximations due to expansions around
the reference state. Neglecting terms of orders higher than second order in (11) is the only
approximation made from equation set (1) to (8). Terms D in the equations denote subgrid scale
turbulence and computational mixing/numerical diffusion, while most other terms are readily
recognizable.

It should also be noted that in the horizontal PGF and other terms where the horizontal
gradient of base-state variables is taken, we explicitly set these termsto zero. By doing so, we avoid
potentially large cancellation error associated with computing horizontal finite differences in the
transformed coordinate. This problem becomes particularly serious when the atmosphere is strongly
stratified in the vertical and the horizontal grid spacing is much larger than the vertical (Janjic,
1977; Mesinger and Janjic, 1985). By separating the horizontally homogeneous base-state from the
total state variables (which is not typicaly done in hydrostatic models) and explicitly setting their
horizontal gradients to zero, the numerical accuracy of the model isimproved. The use of flattened
coordinate surfaces at the upper levels, as mentioned earlier, aso helps reduce such cancellation
errors, particularly near the tropopause where the vertical change in stratification islarge.

In Eq.(8c), the hydrostatically balanced portion of the vertical pressure gradient is subtracted
off, again to reduce cancellation error. The perturbation density p' has to be diagnosed. To facilitate
the use of vertically implicit solver for acoustic modes (discussed further later), we expand p' in
terms of other prognostic variables and retain all first-order terms as well as second-order termsin 6'
and p', as they appear in Eq.(11). This should give sufficient accuracy for aimost all meteorological
applications.

The terms involving oz Div" in the momentum equations are artificial “divergence damping”
terms designed to attenuate acoustic waves, wherea.,r, ando, are the damping coefficients in

three directions (Skamarock and Klemp, 1992). By performing a divergence operation on the
momentum equations, one can obtain a 3-D divergence equation of the form
(Div*)t = ()zg(Div*)XX + a,,(Div*)W + (xg(Div*)zz+... . (12)

It is clear that these terms act to reduce small-scale mass divergence thereby damp acoustic waves.
Different from Skamarock and Klemp (1992), we formulate the damping in terms of mass weighted
divergence instead of velocity divergence. The inclusion of a divergence damping is, however, not
aways needed, especially when vertical acoustic waves are treated implicitly with the forward
biasing in the time averaging.

The pressure equation (8d) is derived from equation of state (1d) and mass continuity
eguation (1e). The last term on the RHS of the equation include contributions to pressure change
from diabatic heating and changes in water vapor, liquid and ice water. A =1 + 0.61qgy + g;. In
general, such contributions are small and Dudhia (1993) argues that a model with arigid lid behaves
more redlistically (more like an atmosphere without an upper lid where the air expands isobarically)
without these terms. The model has the option to neglect these terms as well.

Equations (8e) and (8f) are the conservation equations for potential temperature 8 and water
species (v, e O, G, s and gn). Terms S are the sources from microphysical, radiative and other
processes. Again explicit advection of #and G, is avoided. The second term on the RHS of the q
equation represents hydrometer sedimentation at a terminal velocity Vg, and is non-zero for
rainwater, snow and hail or grapual.



It should be noted that the momentum and scalar conservation equations (8a-g) have been
multiplied by p on both sides. Doing so yields a set of equations whose advection terms can be

written in aflux-divergence form for anelastic flows, and can be formulated to conserve the density-
(p) weighted first and second moments of the advected quantities numerically, thereby controlling

nonlinear computational instability.
Finally, since a minimum of approximations were made in equation set (8), the system
should maintain good energy conservation as does the original unapproximated set in (1).

3. Subgrid-scale and PBL turbulence
3.1. Subgrid-scal e turbulence parameterization

In the ARPS, three subgrid-scale (SGS) closure options for turbulent mixing terms D in
Egs.(8af) are available: the first-order Smagorinsky/Lilly scheme (Smagorinsky, 1963; Lilly, 1962);
the 1.5-order TKE-based scheme (Deardorff, 1980; Klemp and Wilhelmson, 1978; Moeng, 1984);
and the Germano dynamic closure scheme (Germano et al., 1991; Wong, 1992; Wong and Lilly,
1994). We retain fully three dimensional formulation at all scales and include the map factor, m, in
the formulation.

According to Smagorinsky (1963) and Lilly (1962), the turbulent terms represented by D in
the momentum equations (8a-c) may be expressed in terms of the Reynolds stress tensor 7;,

Dui = ml:(Til)x+(Ti2)y:|+(Ti3)z' (13)
where index i (=1, 2 or 3) represents the Cartesian coordinates. The stress tensor 7;; isrelated to the
deformation tensor Dj; through

7;; = PKy D (14)
where K, is the turbulent mixing coefficient for momentum in the x; direction and deformation
tensor Dj; isdefined as

D; = mmjn'k{[ui /(mjrn()]xi +[Uj /(mm)]xj} (15)
where u, are velocity componentsand m =m, =mand m,=1.
The turbulent mixing for 6 and water variables has a general form of

D, =m|(H), +(Ho), [+ (H),. (16)
where H; isthe turbulent flux of ¢ in X direction,
Hj =p KHj m, (¢)xj ) (17)

and Ky is the corresponding mixing coefficient. In general, the same Ky is used for heat, moisture
and hydrometeor quantities and is related to K, through the turbulent Prandtl number, Pr, i.e., Ky
=Km/ Pr. Inthe model, the above formulae are expressed in curvilinear coordinates (&, 7, ).

a) The 1.5-order TKE-based turbulence closure

In the 1.5-order turbulence closure, the eddy mixing coefficient is related to a mixing length
| and avelocity scale measured by the SGS turbulent kinetic energy (TKE), E,
Kmj = 0.1E%];. (18)
Here we make prevision for using different length scalesin different directions.
For isotropic turbulence, the length scaleis



(19)

I1

L= = A for unstableor neutral case
27 % |min(A,l,) forstablecase

where A = (4x Ay Az/ m@ )Y3and | =0.76EY”N " according to Moeng (1984).

When the horizontal grid spacing is much larger than vertical grid spacing, it becomes
necessary to use different horizontal length scale (4n ) than in the vertical (4y). For this case of
anisotropic turbulence,

A for unstableor neutral case

Lb=1,=4n and |, = !
172 : {min(Av,Is) for stablecase

In this case, the turbulent Prandtl number is determined according to
Pr=ma1/3, (1+2,/4,)", (21)

where the lower limit of 1/3 is effective when the vertical length scale |13 exceeds the vertical grid
scale Ay, which can occur when the TKE-based non-local PBL parameterization scheme to be
described in Section 3.2 is used.

The time-dependent TKE is predicted by Eq.(8g). The equation includes terms for buoyancy
and shear production, and dissipation and diffusion of TKE. The ground surface heat and moisture
fluxes (to be discussed in Section 4) also directly contribute the production of turbulence. The
dissipation term is related to E and length scale | while the diffusion term has a similar form as that
for other scalar variables. In the dissipation term, we choose C. = 3.9 at the lowest model level and
C.=0.93 at the other levels after Deardorff (1980) and Moeng (1984).

(20)

b) Smagorinsky-Lilly turbulence closure

The modified Smagorinsky scheme (Smagorinsky, 1963; Lilly, 1962) relates Ky, to grid-
scale flow deformation and static stability instead:

ij:(kA)Z[max(|Def|2-N2/Pr,O)]llz, (22)
J
where k= 0.21 after Deardorff (1972). 4; is a measure of the grid length scale. It is clear that Ky, is

non-zero only when the Richardson number Ri=N?|Def [? is less than Pr. This critical

Richardson number often is defined to be a user-specified value between 1/3 and 1. |Def| is the
magnitude of the deformation |Def| and N is the Brunt-Vaisdla frequency calculated according to
Durran and Klemp (1982) for moist air.

On a model grid with similar grid spacings in al three directions, the SGS turbulence is
nearly isotropic, so that

A = (Ax Ay Az m2 )Y3for al j. (23)

When the grid aspect ratio (4x /Az) is large (e.g., for mesoscale and synoptic scale applications), we
use different length scales in the horizontal and vertical, in the same way as we do with the TKE
turbulence option.

¢) Germano dynamic closure scheme

This scheme is the same as the Smagorinsky-Lilly scheme except that the parameter k in
Eq.(22) is dynamically determined based on local flow and varies with space and time. As such, the
SGS representation is adjusted to match the statistical structure of the smallest resolvable eddies.
More details can be found in Germano et a. (1991), Wong (1992) and Wong and Lilly (1994). The
non-terrain version of the Germano scheme is currently available for the ARPS (Wong, 1994).



3.2. The non-local PBL parameterization

The turbulence closure schemes discussed in Section 3.1 are designed to parameterize the
local mixing due to sub-grid scale turbulence. In a convectively unstable boundary layer, most of
the vertical mixing is achieved by 'large’ boundary layer eddies (Wyngaard and Brost, 1984). Unless
the vertical as well as the horizontal resolutions of the model are on the order of 100 m or less so as
resolve most of the boundary layer eddies (100 m or less), additional parameterization is hecessary.

The treatment of convective boundary layer turbulence in the model is a combination of the
3-D, 1.5-order Deardorff SGS turbulence scheme discussed in Section 3.1 and an ensemble
turbulence closure scheme of Sun and Chang (1986). The vertical turbulent mixing length I3 in (20)
is related to the (non-local) PBL depth instead of the local vertical grid spacing inside an unstable
PBL. This relationship is based on the profile of peak vertica wavelength of vertical velocity
derived by Caughey et a. (1979) from observational data; that is

I, =1,{1.8z[1-exp(-4z/ z))—0.0003exp(8z/ z)]} , (24)
where z is the height above ground and z the top of PBL. Constant |y is chosen to be 0.25. In our
implementation, z is defined as the height at which a parcd lifted from the surface layer becomes
neutrally buoyant.

Under stable conditions or above the convective boundary layer, the length scale | reverts
back to that of the Deardorff scheme as in (19) or (20). The performance of this non-local TKE-
based scheme will be evaluated in Part I (Xue et al., 2000) together with the coupled soil-vegetation
and the surface layer model.

4. Thetreatment of other Physical Processes

The state of the land surface has a direct impact on the sensible and latent heat exchange
with the atmosphere. The time-dependent state of the land surface is predicted by the surface energy
and moisture budget equations in a soil-vegetation model. The model used in the ARPS is based on
Noilhan and Planton (1989), Pleim and Xiu (1995) and later improvements to their model. Surface
characteristics data sets with resolutions on the order of 1 km have been derived from various data
sources for use in the ARPS. The ARPS implementation has the capability of defining multiple soil
types within each grid cell, so as to take advantage of the high-resolution data set.

For the precipitation processes, the ARPS includes the Kessler (1969) two-category liquid
water (warm-rain) scheme and the modified three-category ice scheme of Lin et a. (1983). A
simplified ice parameterization scheme of Schultz (1995) is also available. When cumulus
parameterization is needed, the Kuo (1965; 1974) and Kain-Fritsch (1990; 1993) schemes are
available, with the latter being used for mesoscal e applications most of the time.

The treatment of shortwave radiation in the ARPS is based on the models of Chou (1990;
1992) and the long-wave radiation model on Chou and Suarez (1994). Enhancements to the cloud-
radiation interaction in the presence of explicit hydrometeor typesis after Tao et al (1996).

5. The Numerical Solution
5.1. Basic discretization

The continuous equations given in the previous sections are solved using finite differences
on an Arakawa C-grid (Arakawa and Lamb, 1977). The C-grid represents the geostrophic
adjustment better than most other choices and allows for a straightforward and accurate treatment of
the advection-transport equations for the scalars. With this grid, al prognostic scalar variables are
defined at the center of the grid box while the normal velocity components are defined on their



respective box faces. Other derived variables are evaluated at locations that minimize spatial
averaging in the difference operations (Fig. 2).
We define the following standard average and difference operators:
9" =[@(s+nAs/ 2) + p(s—nAs/ 2)]/ 2
Ons®? =[@(s+nAs/ 2) — p(s—nAs/ 2)]/ (nAS) (25)
where ¢ isadependent variable, s an independent variable in space or time and n an integer.
Using the above notation, U*, V* and W* defined in (7) are evaluated as follows:
" =S . T « =
U'=p U Vi=p Veand W =p W°. (26)
The contravariant vertical velocity, W°, is evaluated according to

-7 =e 7, = —¢
We=@u J, +v J, +W xfyn)(\/g p )t (27)
Clark (1977) found that this form of discretization is necessary for obtaining a correct kinetic energy
budget in his anelastic model.

5.2. Time integration of the governing equations

The mode-splitting technique of KW is employed to integrate the dynamic equations (8a-d).
With this method, acoustically active terms, the terms on the LHS of those equations, are integrated
using anumber of small time steps within asingle large time step, and these terms are updated every
small steps. The terms representing slower modes, i.e., those on the RHS of Egs.(8a-d), are updated
only once for all these small steps.

The leapfrog scheme is used for the large time step integration except when alternative
schemes such as the flux-corrected transport scheme are used for scalar advection. In the small
steps, u and v are integrated using forward-in-time scheme (with respective to PGF terms), and the
w and p equations are integrated implicitly in the vertical direction using the Crank-Nicolson
scheme.

Following Skamarock and Klemp (1994), ARPS aso provides an option for treating the
internal gravity wave modes in the small time steps. In this case, the ¢-equation is aso integrated
within the small steps, with only the vertical advection of base-state 6, i.e., the second term on the
LHS of Eq.(8e), being updated every small steps. Correspondingly, the buoyancy term in the w
equation is also evaluated in the small steps. Doing so removes the restriction resulting from the
static stability on the large time step. All other scalar equations are integrated in large time steps.

a) Small time step integration
The small step integration of the equations (8a-€) in finite difference form can be expressed

as
—EUT —U” P , . —\
D T:—m;[@{%(p—apw )}+5§{Jl(p—a§D|v) H + f, (284)
_ T+AT _ \,7 - - T
p*”VA_V: _mﬁ{d,]{J4(p'—anDiv*)}+5§{J2(p'—anDiv*)g”H +f) (28b)
T P
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Here we also include the option for integrating the potential temperature equation in the
small steps. For each big time step, these equations are integrated from t-At to t+ At with a number
of small time steps, with a step size of Az. Here, superscripts zand 7+ A7 denote current and future
small step time levels, and t denotes terms updated in large steps only. We keep p and cs constant in
the small steps when they appear in the coefficients even though they are dependent on the fast-
changing p' and &'. The terms related to slower modes (advection, diffusion, inertial oscillations,
diabatic processes, €tc.), i.e., the terms on the RHS of Egs.(8a-€), are grouped in ft.

Weighted time averaging with coefficient S is performed on the vertica PGF and pressure
buoyancy terms in the w equation, Eq.(28c), and on the vertical velocity divergence and base-state
pressure advection terms in the p equation, Eq.(28d). These are terms directly responsible for the
vertically propagating acoustic waves; they will impose a stringent limitation on Az if treated
explicitly. This averaging couples the two equations and makes the solution procedure implicit. At
the same time, it removes the limitation on A7 due to vertical acoustic modes as long as 3> 0.5.
Durran and Klemp (1983) showed that a # value between 0.5 and 1.0 (effectively biasing the
scheme towards the future time) offers additional computational stability by damping the vertical
acoustic modes. A value 0.6 is the default value in the ARPS. The w and p equations are solved by

first eliminating p'*™* from the two equations then solving a linear tridiagonal system of equations
for w™** subject to top and bottom boundary conditions for w. Details can be found in Appendix

B.
b) Termsrelated to slow modes

The finite difference form of the terms for slower (i.e., advection, diffusive and inertia)
modes represented by f' in Egs.(28) is as follows:

t t
f{ =—ADWU +[p*v"(v”5§m—ﬁé5nm)*} J{p* v —p fw } +J/GDJ™, (299)
— n Tx 21 '
fl :—ADW—[p u* (V'8,m-u°g,m) } —[p fas } +7/GDy™, (29D)
=1 =
thV:—ADV\N{p fu’ } +BY +/GDi™, (29¢)
f'=— ADVP', (29d)
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f! = —ADVT ++J/GD/™ +/GS. . (29)

B in Eq.(29¢) represents the acoustically inactive buoyancy terms, as in the second term on the RHS
of Eq.(8). The mixing terms are lagged in time by At for the linear stability consideration, while all
other terms are calculated at timet. Finally, we point out that the discretized Coriolis terms, as well
as the terms involving differentiation of the map factor m, cancel each other in the globally
integrated total energy equation, ensuring energy conservation.

In Eq.(29), ADVU, ADVV, ADVW, ADVP and ADVT are the advection terms for u, v, w, ¢
and p', respectively. Their continuous form is given by (9) but their discrete formulation depends on
the choice of advection scheme and the grid staggering. We give the second- or fourth-order
centered formulation here for scalar 8' only. Those for u, v, w, and p' can be found in Appendix C.

AOVT= 4 [m( U6 +V 66") + W ']
+@-)[m(U%s0"+V 5,07) + Wse ],

When A = 1 the scheme is second-order and when A = 4/3 the scheme is the fourth-order accuratein
gpace. As with most fourth-order schemes, the order of accuracy is true only for constant flows.
When the flow is not constant, the truncation error is proportional to the gradient of the advective
velocity, and the magnitude of error is smaller than that of the fourth-order scheme of Wilhelmson
and Chen (1982).

The advection terms are written in advective form, which can be shown to be numerically
equivaent to the flux form consisting of a flux term plus an anelastic correction. The latter form is
often used by other modelers (e.g., Wilhelmson and Chen, 1982). Neglecting the effect of
compressibility, it can aso be shown (see Appendix C) that both the second-order and fourth-order
advection formulations in EQ.(30) are quadratically conserving, which is important for controlling
nonlinear aliasing instability (Arakawa and Lamb, 1977) and for better representation of the
nonlinear energy cascade. According to our knowledge, this quadratically conserving fourth-order
formulation has not been used before.

For the scalars, two additional options are avalable. One is the multi-dimensional
monotonic flux-corrected transport (FCT) scheme after Zalesak (1979), the other is the more
efficient though less accurate positive definite scheme based on leapfrog centered difference
schemes (Lafore, 1998). Both schemes are suitable for advecting positive definite variables, while
the former eliminates both undershoot and overshoot associated with conventional advection
schemes. In the implementation of the flux limiter, care has been taken so that the extrema in the
advected scalar such as the potential temperature instead of the density weighted scalar are checked
to prevent overshoot and undershoot.

The discrete form of the mixing terms D in EQ.(29) uses second-order centered differencing
and is straightforward based on their definitionsin Section 3.1.

(30)

¢) Time integration of other scalar equations

The equations for water substances and TKE are solved entirely on the big time step, and

their numerical representation is given in ageneral form for dependent variable q as
t+At

_ 4t-At ot
pr Atq :_ADVQI+5:[P*qu/Z£§] +J/GD; ™ +4GS,, 3D

where ADVQ has exactly the same functional form as ADVT in EQ.(30) except when the FCT or the
simple positive-definite advection scheme is used. The second term on the RHS is aflux divergence
term, representing sedimentation of g at aterminal velocity V, (positive downwards). Vy is given by
the microphysics parameterization and is non-zero only for falling hydrometeors. Since Vg can be
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large relative to w, split time steps based on an upstream-forward advection scheme are used for this
term inside each large time step. Even so, this process can take unproportionally large amount of
total CPU time because the step time size permitted can be very small when near-surface vertica
grid spacing is very small. A vertical implicit treatment is being implemented for this term and it
should provide a better efficiency.

d) Special treatment of vertical mixing

Given that in the PBL the vertical mixing coefficients Ky and Ky, are based on the length
scale | in Eq.(24), vertica turbulent mixing often results in a linear stability constraint more severe
than that associated with advection, especially when the vertical resolution is high. To overcome
this potentially severe restriction on the large time step size, we apply the implicit Crank-Nicolson
scheme to the vertical mixing so that the integration is absolutely stable for these terms.

5.3. Boundary conditions
a) Lateral boundary conditions

Several types of boundary conditions can be used in arbitrary combinations in the ARPS. At
the lateral boundaries, they include rigid wall (mirror), periodic, zero-gradient, wave-radiating
(open) and external (one-way nested) conditions. Furthermore, several variations of the radiation
lateral boundary condition are available. Two options are used most often. One is based on the
Orlanski (1976) condition which applies a simple wave equation to the normal velocity component.
Instead of using locally estimated phase speeds as proposed by Orlanski, we use the vertically
averaged value of the outward-directed phase speeds. Without the averaging, domain wide pressure
drift sometimes occurs in simulations with arelatively small domain.

Another variation is originally proposed by KW. In this case, disturbances are assumed to
propagate at the flow speed plus a dominant internal gravity wave speed; the latter is a user-
specified constant that is typically set to 30 to 45 m s*. Again, a simple wave equation is applied to
the normal velocity component only. Other variables on the boundary are obtained from their
respective prognostic equations, using upstream advection when necessary.

One-way interactive self-nesting and nesting within other models are achieved by using the
Daviestype (1983) latera boundary condition that includes a boundary relaxation zone.
Furthermore, the ARPS offers a full implementation of the adaptive grid refinement procedure of
(Skamarock and Klemp, 1993). This procedure provides ARPS with unlimited level of two-way
interactive nesting while allowing the nested grids to be added and removed in response to the flow
evolution during the model integration.

b) Vertical boundary conditions

At the lower and upper boundaries, zero-gradient and periodic boundary options are
available. For most applications, a free-slip mirror condition is applied at the lower boundary. The
mirror condition is implemented in the computational space; therefore, the contravariant vertical
velocity We = 0 at {=0. Thisresultsin aflow that follows the terrain surface at z = hy,, where hy,is
the terrain elevation. When surface friction in the form of surface momentum fluxes is included, the
lower-boundary condition is often referred to as 'semi-dlip'.

At the upper boundary, the wave-radiating condition of Klemp and Durran (1983) can be
used in combination with a Rayleigh damping layer. When wave reflection is not anticipated, arigid
lid condition can be applied. The implementation is similar to Klemp and Durran, except that a
cosine transform is used instead of the full Fourier transform, thereby removing the latera
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periodicity requirement on w at the top boundary. The ARPS implementation of radiative upper-
boundary condition is given in Appendix D.

5.4. Computational mixing

As in most numerical models, a certain amount of computational mixing or numerical
smoothing is often needed to remove poorly resolved small-scale noise. This noise can originate
from non-linear aiasing and numerical dispersion, from initia analysis, or treatment of physical
processes. In the ARPS, the computational mixing is included in all prognostic equations except for
the pressure equations, and has either a second-order (n=2) or fourth-order (n=4) form as given by

w2e) | 0"(0°¢)  3"(p'¢) "(p'¢)

JGD, = (-2) {Khn[ o + o }r Kun o } (32)
where Kpn and Ky, are the coefficients of the n-th order mixing in the horizontal and vertical
directions, respectively. High-order monotonic numerical mixing / diffusion formulations of Xue
(2000) are also available and the formulation ensures global conservation of the mixed/diffused
variables. It is important to note that, unlike turbulent mixing, the computational mixing operates
along the model grid surfaces and acts on the perturbations from the base state instead of the total
variables. This type of mixing imposes limitations on the large time step size and the constraint is a
function of the magnitude of mixing coefficient.

6. Computational | mplementations

The ARPS computer code was developed under a stringent set of rules and conventions.
Uniformity of variable names is maintained across all subroutines in the entire system. Readability,
maintainability and portability of the code have been high priorities during the model development
process. These virtues, together with extensive internal and external documentation (e.g., Xue et al.,
1995), are perhaps unique to this code among atmospheric modeling systems. The highly modular
design and the clearly defined module interfaces greatly ease the process of code modification and
the addition of new packages. The uniform coding style throughout the model and the external
documentation have proven to be extremely beneficial to both novice and experienced users. The
former makes the porting of the code to avariety of paralld platforms straightforward (Droegemeier
et a., 1995a).

Currently unique to the ARPS, we maintain a single version of the source code for all
computer platforms. Execution on distributed memory platforms are achieved by using MPI
(Message Passing Interface) message passing library. The calls to these routines are inserted into the
model in a pre-processing step by a small set of trangators written in C (Sathye et al., 1996). Given
the uniform and consistent coding style followed throughout the ARPS, the translators have to dedl
with only a small subset of possible scenarios. The version of code prior to Version 5.0 is written in
FORTRAN-77 for maximum portability. Conversion of the entire system into Fortran 90 under a
new coding standard was recently completed with the aid of a newly developed automatic code
converter. This version makes use of, among other things, dynamic memory alocation and new
FORTRAN intrinsic functions for additional flexibility and better efficiency.

Significant efforts have also been made in the code optimization. This includes fine-tuning
the code structure for maximum vectorization and/or parallelization, and replacing all expensive
power and exponentia functions with lookup tables. The latter is done without noticeable loss of
solution accuracy. In the following sections, we present results of ARPS as applied to mountain
flow and density current problems.
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7. Model Verificationswith Mountain flows

Analytic solutions of linear and nonlinear mountain waves in a constant flow over idealized
terrain have been commonly used to verify the correctness and accuracy of numerical models (e.g.,
Clark, 1977; Durran and Klemp, 1983; Xue and Thorpe, 1991). Vertica momentum transport by
mountain waves is an excellent measure of the model's ability handling the lower boundary dynamic
forcing. Under certain circumstances, mountain forced waves can greatly amplify to cause wave
breaking and the formation of strong winds on the lee slope. In this section, we compare the quasi-
steady state solutions of the ARPS model against analytical solutions for linear and nonlinear
mountain waves in both hydrostatic and nonhydrostatic regimes. The results validate the coordinate
transformation, lower and upper boundary conditions, as well as the time integration procedure of
the ARPS. We further test the model's ability to simulate strong wave-breaking events, such as the
well documented 1972 Boulder downslope windstorm (Lilly and Zipser, 1972).

7.1. Verification against analytic solutions

For non-rotational flow forced by a small-amplitude 2-D mountain, the vertical displacement
of aparcdl, 9, at asteady state is governed by a simple equation (Smith, 1979)

S +0,+126=0, (33)
where |, aso known as the Scorer parameter, is constant for an isothermal, anelastic, and constant
flow [1% = g*((C,TU?) ™" - (4R’T/)™*) where g is the gravitational acceleration, C, is the specific
heat of air at constant pressure, R the gas constant for dry air, T, the temperature of isothermal

atmosphere, and U the constant flow speed]. For a bell-shaped mountain, the solution to (33) can
be found using the Fourier transform method subject to lower-boundary condition
0(x,0) = h(x), where h(x) is the mountain profile. The solution for 6 is proportional to the terrain
height and the sum of integrals over the horizontal wavenumber, k, from 0 and | and from | to oo.
Waves with horizontal wave number less than | are evanescent in the vertical, while shorter waves

have vertical wave numbers equal to v12 — k? . For a bell-shaped mountain, the dominant horizontal
wave number is 1/a while the dominant vertical wave number is|. Furthermore the wave amplitude
isinversely proportional to the square root of base-state density (see Smith, 1979). The solution can
be evaluated numerically and used to verify the model.

The vertical flux of horizontal momentum defined as

M = Iﬁu'w'dx (34)

where is constant with height for linear mountain waves in a uniform flow (Eliassen and Palm,
1960). When the linear waves are hydrostatic and irrotational, hydrostatic momentum flux

M =7 pNOT,, (35)

Where p, is the density and N the static stability at the ground level. For both rotational and

nonhydrostatic mountain waves, the vertical flux is smaller than that of hydrostatic waves (Gill,
1982).

Long (1953) showed that for the specia case of Boussinesq and uniform flow with constant
static stability, the vertical displacement 6 forced by a finite-amplitude mountain satisfies an
eguation that has the same form as (33). For such aflow, the Scorer parameter | (I=N/U ) isaso
constant, and therefore the same Fourier transform procedure used for the linear case can again be
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used to obtain the solution for 8. The main difficulty here is the enforcement of nonlinear lower
boundary condition d(x,z) = h(x).

Instead of trying to find the analytical solution for a pre-specified mountain profile that
satisfies the nonlinear lower boundary condition, we follow a procedure used by Durran and Klemp
(1983) and determine a mountain profile so that the streamline given by the linear solution forced by
the original mountain follows this new profile at the lower boundary. For a bell-shaped mountain
originally 570 m high, the resultant mountain has a height of 503 m and the peak is shifted upstream
by about 400 m. In essence, the modified mountain produces nonlinear responses that are equivalent
to the linear responses produced by the original taller mountain. The new mountain profileis used in
our nonlinear experiment (see Table 1) and the results will be compared with the analytic solution
obtained using the procedure outlined above.

The ARPS is first verified against the 2-D solutions of linear mountain waves in both
hydrostatic and nonhydrostatic flow regimes (as in Smith, 1979). In al experiments, the earth's
rotation is neglected and an isothermal (To = 250 K) uniform upstream flow (U = 20 ms?) is
specified. The experiments are impulsively started, i.e., the mountain is introduced into the flow at
the initial time. The Durran and Klemp (1983) radiation lateral boundary condition option is used
for al control experiments, and the upper boundary condition uses either Rayleigh damping or the
wave permeable condition of Klemp and Durran (1983), a small amount of horizontal spatial
smoothing (computational mixing) is applied only in the nonlinear run. The gravity wave modes are
integrated on the large time step. Divergence damping is not used.

Three control experiments for idealized mountain waves are summarized in Table 1. For the
parameters used here we have I* = 1 km. In experiment LH, a = 10 km » I, thus the flow is
essentially hydrostatic. In experiments LNH and NLNH, a = 2 km ~ I}, the flow belongs to the
nonhydrostatic regime.

a) Linear mountain wave experiments

We present the model results at nondimensiona (ND) times that are scaled by the advective
time scale Ug/a. Fig. 4 shows the analytical (upper panel) and model (lower panel) solutions of u'
and w' for part of computational domain at Ugt/a = 100 (Note that the mountain depicted in the
figures has been amplified by a factor of 500 for illustration purpose and it is done for al linear
solutions). The analytical fields were obtained by numerically integrating the integral solution using
mid-point method (Press et al., 1989). In genera, the simulated waves are slightly weaker than their
anaytical counterparts, and the error increases with height. The maximum relative error in W' is
about 5%, while that of u' in about 14%. The phases of the waves agree very well, however. Notice
the amplitudes of the waves increase with height due to the effect of decreasing density.

Vertical profiles of horizontal momentum transport by gravity wave processes are plotted in
Fig. 5 for experiment LH, together with that from the analytical solution (bold line). These profiles
have been scaled by the analytical flux for linear hydrostatic waves given in (34). It can be seen that
the analytical flux is amost unity, while the smulated fluxes are about 0.97 at the surface and
approach 0.96 at later times at the level immediately below the Rayleigh damping layer (12 km).
This accuracy is at least as good as those reported in the literature. For example, Durran and Klemp
(1983) reported that the flux at one vertical wavelength (z=6.4km) reached 94% of the anaytical
value at aND time of 60 for their compressible model. A similar accuracy was aso reported by Xue
and Thorpe (1991). The improvement in accuracy obtained here can be partly attributed to higher
vertical resolution.

We aso performed an experiment (LHa) that is the same as LH, except that the vertical grid
is stretched from a minimum of 20 m at the surface while keeping total number of levels the same.
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The stretching is based on a hyperbolic tangent function as described in Xue et a. (1995). The
momentum fluxes in Fig. 6 are even closer to unity (0.98) at the surface while the values at upper
levels are dlightly smaller, indicating that the solution accuracy is slightly sensitive to the vertical
resolution. Another experiment (LHb) was conducted that used the wave-radiating top boundary
condition without Rayleigh damping. In this case, the flux profile (Fig. 7) is nearly constant, with
values being of about 96% at the surface and decreasing to 91% at the top by non-dimensional time
140. It appears that the radiation boundary condition is working well in this case.

Fig. 8 shows the analytical and model simulated u' and w' fields for linear nonhydrostatic
mountain waves from experiment LNH. Evident in the solutions are the dispersive wave trains
downstream of the mountain peak, especially at upper levels, distinguishing them from the
hydrostatic solutions obtained in previous experiments. The simulated wave pattern agrees quite
well with theory, with the amplitudes being slightly smaller (asin the previous cases). Fig. 9a shows
the model simulated isentropes after @ has been amplified by 500 times for the purpose of
illustration. These isentropes approximate parcel traectories for an adiabatic, steady-state flow. It
can be seen that the lowest isentrope intercepts the terrain because of the linear boundary forcing. In
these simulations, the pressure field is found to be most sensitive to contamination at the lateral
boundaries (which use an open boundary condition) in along ssmulation, and it is shown in Fig. 9b
that it remains well behaved by ND time 100.

The momentum flux [scaled by the hydrostatic value given by (35)] from experiment LNH
(Fig. 10) is essentially constant at later times below the Rayleigh damping layer, with a value of
about 0.76. This result is very close to the theoretical prediction (Klemp and Durran, 1983) for
linear nonhydrostatic mountain waves.

b) Nonlinear mountain waves

Because Long's solution requires the Boussinesqg approximation, the option for this
approximation in the ARPS is turned on. It involves replacing o by its constant surface value after
6 and p are specified. We also neglect the contribution by p' to the buoyancy as well as the vertical
advection of p in pressure equation. These simplifications make the system of equations anal ogous
to the Boussinesg equations describing an incompressible flow (the same approximations were
made in Xue et a., 1997). Finally, the atmosphere remains isothermal and U =20 so that the
Score's parameter has avalue similar to that in our previous experiments.

Fig. 11 shows the analytical solution of u' and w' (upper panel) for a 503 m high mountain
obtained using the procedure described in Section 7.1a. The model solutions at ND time 100 are
given in the lower panel. Since the reference state density is constant, the wave amplitude no longer
increases with height; in fact, it decreases because significant wave energy is dispersed downstream.
The agreement between the two solutions is very good, with the amplitudes in the numerical
solution being only slightly weaker.

The simulated isentropes and perturbation pressure are shown in Fig. 12. Unlike the previous
linear experiment (see Fig. 9), the isentrope at the surface closely follows the terrain, while the
waves at upper levels are weaker than those in Fig. 9 for the lack of density scaling effect. The
pressure field is again well behaved. Finally Fig. 13 shows the vertical profiles of momentum
fluxes. These fluxes have been scaled by that of hydrostatic nonlinear mountain waves, the latter
given by the formulation (35) for linear waves but with hj;=570 m. The profile calculated from the
anaytical u' and w' from Long's equation is shown by the thick line. The simulated vertical fluxes
overshoot at the early time due to the impulsive startup but converge toward the analytical value of
about 0.76. This value is very close to that in experiment LNH, indicating that both linear and
nonlinear mountain waves in the nonhydrostatic regime with al = 2 transport momentum at a rate of
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about 76% of their hydrostatic counterparts, a result that agrees with theory (Klemp and Durran,
1983). Furthermore, the fact that the flux is nearly constant throughout the depth of domain at later
times indicates that the radiation top boundary condition works well even for these finite amplitude
waves (of course the wave amplitude has been significantly reduced at upper levels due to
downstream dispersion of energy).

7.2. Simulation of 1972 Boulder windstorm

A severe windstorm developed on the lee (east) side of the Front Range of the Rocky
Mountains was well observed and documented in Lilly and Zipser (1972) and has been a subject of
many subsequent studies (e.g., Klemp and Lilly, 1975; Peltier and Clark, 1979; Durran, 1986).
Recently, 2D simulations of this case with a bell-shaped mountain were conducted using 11 models
(including ARPS) and the results intercompared (Doyle et al., 2000). Initialized with a upper-stream
sounding taken at Grand Junction CO over an bell-shaped mountain that resembles the Front Range,
most models were able to simulate the upper-level wave breaking and intensification of downslope
winds reasonably well, although significant differences exist among the solutions.

In this paper, we report the results of our simulation using a high-resolution real terrain
profile. The terrain profile is derived from a 3 second terrain database sub-sampled at 15 second
intervals. The data were bilinearly interpolated to a 1 km grid after which a 1-2-1 filter is applied
once to remove 2 grid interva terrain features. A 500km E-W cross-section through Boulder
(40.027N) is taken and a 28 km deep domain is used. Radiation boundary conditions are used the
top and lateral boundaries. The latter uses the Klemp and Wilhelmson (1978) formulation with a
constant phase speed of 50 ms™. The model is initialized with the 1200 UTC 11 January 1972
Grand Junction CO sounding (Fig. 14), which extends up to a 28 km altitude. The sounding has a
critical level (u=0) at the 23 km level, therefore waves are expected to be confined to below this
level. The sounding also contains arelatively stable layer between 5 and 7 km levels, contributing to
the intensification of downslope winds in a form of hydraulic jump flow, according to Durran and
Klemp (1986). Most previous simulation studies of this case used significantly smoothed soundings
with modified wind profile at the upper levels (e.g., Peltier and Clark, 1979; Durran and Klemp,
1983). Different from Doyle et al. (2000), care is taken here to place the lowest level of observed
sounding at the station height rather than at the sealevel so asto yield a correct distance between the
mountain peak and the tropopause (and the stable layer). The grid resolution is 1 km in the
horizontal and 0.2 km in the vertical. The model flow is abruptly started and the control experiment
does not include surface friction.

Fig. 15 shows the potential temperature contours and cross-mountain velocity fields at 3 and
6 hours. The isentropes represent the flow trajectories reasonably well outside the regions of wave
breaking. The most significant features seen are the descent of mid-tropospherical isentropes along
the lee slope of the Front Range, accompanied by strong surface winds of over 70 and 80 ms™ at 3
and 6 hours, respectively. The maximum surface wind reached 70 ms® at 2 hours 40 minutes and
remained above 70 ms™ for the rest of the simulation. The surface wind peaked 94 ms™ at 4 hours
47 minutes in this simulation. The strong surface winds propagate downstream with the gust front,
at which the flow decelerates abruptly and transitions into a subcritical flow in the form of hydraulic
jump (Durran, 1986). Strong vertical motion is found at the front, signified by the nearly vertical
isentropes. Above this strong surface flow and below tropopause, flow reversal (u<0) is seen shortly
after 3 hours, resulting in flow overturning and strong mixing. Wave overturning and breaking are
also found above the tropopause, where vertical wavelengths and amplitudes are smaller due to
higher stability. The strongest upper-level wave activities are found to be coupled with the strongest
tropospheric forcing at the jump, whereas activities directly above the upper-tropospheric wave-
breaking region are weak. This well mixed region acts as a critical level that, in theory, reduces the
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vertical group velocity to zero and prevents upward transport of wave energy. The trapping of wave
energy a the lower levels tend to accelerate the low-level flow. Further upstream, waves of
significant amplitude are forced by lower (relative to terrain height on the lee side) ridges near
x=200 km, and these waves propagate vertically into the stratosphere forcing significant wave
breaking as well (not shown). These waves are sufficiently far upstream of the Front Range and do
not appear to have significantly affected the primary wave system by 6 hours. Due to the presence of
very weak flow at about the 23 km level, nearly all wave activities are confined below 23 km (not
shown). The use of radiation top boundary condition does not appear critical to the lower-level
mountain flow.

Overal, the simulated wave system at the earlier time resembles the observation depicted in
Figs. 4 and 5 in Klemp and Lilly (1975). The peak surface wind speed is larger than observed,
almost certainly due to the absence of surface friction. The results are aso consistent with those of
previous simulation studies, although most of which use an idealized ridge. Our results also agree
qualitatively well with the smulation of COAMPS reported by Dolye et a. (2000) which applied a
smoothed real terrain. The sounding used the in latter, however, assumed height above sea level
instead of ground level, therefore the tropopause in their case was about 1.5 km lower than reality.
A simulation repeated using their sounding results in a result closer to their solution. Finally, the
extra fine-scale terrain features included in the current experiment do not seem to significantly
impact the general behavior of the downslope flow, as is supported by experiments in which small-
scale features are filtered out or when a bell shaped ridge of similar scale and height is used (not
shown). This can also be understood by noting that the downslope flow is mainly fed by the flow
above the 4 km level upstream. Had the terrain upstream of the Front Range been replaced by air,
the air would be too heavy (measured by the upstream Froude number) to climb the mountain range.
Another experiment that included parameterized surface friction (through surface drag) resulted in a
much weaker wave system, in which the downslope winds are limited to the lee slope (not shown).
Thisresult is consistent with the finding of Richard et al. (1989).

7.3. Summary

We presented in this section a set of idealized mountain wave experiments as well arealistic
simulation of a severe downslope windstorm. For the former, analytical solutions that cover linear
and nonlinear waves in both hydrostatic and nonhydrostatic flow regimes can be found. Quasi-
steady state model solutions were compared against these analytical solutions and excellent
agreement was found. Experiments were conducted to examine solution sensitivity to vertical grid
stretching and the top boundary condition. These experiments, as well as the simulation of a severe
downslope windstorm, demonstrated the integrity of the dynamic and numerical framework of the
model, in particular those aspects related to the coordinate transformation, the treatment of lower-
boundary forcing, and the top boundary conditions.

8. Model Validation with a Nonlinear Density Current

In this section, we examine the model's ability to accurately handle highly nonlinear flow
with strong interior gradients. A benchmark problem of a simple density current is chosen. Solutions
for this problem from a number of numerical models, including those of Carpenter et a. (1990) and
Xue and Thorpe (1991), are documented in Straka et al. (1993). Particular attention is paid to
several options of advection schemesin the ARPS and their impact on the solution accuracy.
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8.1. The Test Problem

The test consists of a 2-D density current formed from a cold blob of air descending from an
elevated level to the ground in a neutrally stratified and initially static atmosphere. As the cold air
reaches the ground, it spreads along the lower boundary and develops rotors along the top of the
cold pool boundary due to Kelvin-Helmholtz instability (Fig. 16). In the spatial resolution
experiments, the eddy-mixing coefficient is kept the same, so that the solutions may converge at
high resolutions.

The base-state atmosphere is calm and has a constant potential temperature of 300 K. An
elliptic initial bubble is specified in terms of temperature perturbation. It is centered at x=0 km and
z= 3 km with avertical half-axis of 2 km, a horizontal half-axis of 4 km and a minimum temperature
of -15 K (see Straka et al. 1993). Free-slip wall conditions are used on al four boundaries. The
computational domain is 6.4 km deep and 25.6 km wide. Horizontal symmetry of the problem is
exploited by centering the bubble on the left boundary.

Since the amount of details that can exist in the model solution are limited by the specified
and fixed eddy mixing coefficient, it is possible to obtain a reference solution at a high resolution
beyond which no noticeable improvement can be achieved. Such areference solution was presented
in Straka et a. (1993) using a compressible model with second-order advection at 25 m spatial
resolution. We present in Fig. 16 a similar reference solution obtained using our model with fouth-
order centered spatia difference, which is essentially identical to that obtained using second-order
scheme (not shown). Since this solution is very close to the reference solution in Straka et al. (1993,
seetheir Figure 2), we will use it as our benchmark.

8.2. The Model Results

We conducted a set of experiments using four options of advection schemes at 400, 200 and
100 m spatial resolutions (Table 2). The four advection options are: 1) second-order centered; 2)
fourth-order centered; the flux-corrected transport (FCT) (Zalesak, 1979) with second-order (3) and
fourth-order (4) higher scheme. For the first two options, the same advection schemes were applied
to both momentum and scalars, while for the latter two, momentum was advected by the standard
fourth-order centered scheme. The details on these options can be found in Part |. FCT preserves the
monotonicity but does not require positive-definiteness, it can therefore be used to advect fields
with both signs. As a specia case, a positive field will remain positive in the advective process. The
result of using FCT in the model of Xue and Thorpe (1991) is documented in Straka et al. (1993).
Following Straka et a. (1993), the experiments are run at 400m, 200m and 100m resolutions. At
these resolutions, the simulated density currents are, respectively, poorly resolved, reasonably
resolved and well resolved, measured in terms of the spatial resolution as compared to the
characteristic flow features. The difference in the scheme performance, as will be shown, is more
pronounced at lower resolutions.

Fig. 17 shows the simulated @ fields at 900 s, using four advection options at 400 m
resolution. The corresponding solutions using 200 m and 100 m resolutions are shown in Fig. 18
and Fig. 19, respectively. The bottom panel of each figure is the reference solution averaged to the
corresponding resolution. It is clear that undershooting in €, as indicated by the minimum values, is
occurring near the density current head in al but the FCT solutions, with the problem being most
serious at the lowest resolution. The error is generally larger with second-order scheme than with
fourth-order scheme. This undershoot, causing the cold pool to be too cold, is believed to be
responsible for the faster propagation speed of the front in al these cases.

At al resolutions, the fourth-order schemes clearly outperform the second-order
counterparts, in defining the frontal location and in simulating the shape and location of the billows
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(e.g., compare Fig. 17aand Fig. 17b, Fig. 18a and Fig. 18b). The FCT solutions are generally much
better than their non-monotonic counterparts. Thisis evident by comparing, e.g., Fig. 17c with Fig.
17a, and Fig. 17d with Fig. 17b. The FCT scheme not only eliminates spurious oscillations but aso
resolves the fine-scale billow structures better. At 100 m resolution, the differences in the solutions
are smaller but are still readily identifiable, with the 4™-order and FCT options outperforming the
others. Among all solutions, FCT4th100 in Fig. 19d compares best with the reference solution,
agreeing with our expectation. The FCT scheme is about 3 times more expensive the conventional
scheme of the same order, however.

8.4. Summary

It has been documented in this section the behavior of four advection options in the ARPS,
as applied to a density current for which a reference solution is obtained at much higher resolution.
The monotonic FCT scheme clearly outperforms the regular centered difference schemes, especialy
at relatively coarse resolutions. The fourth-order option exhibits clear improvement over the lower-
order counterpart. The comparisons of these solutions with the grid-converged reference solution
obtained using ARPS as well as with the benchmark solution in Straka et al. (1993) establishes the
reliability of the model in handling highly nonlinear and transient solutions.

9. Summary and Discussion

The design philosophy, the choice of equations and their formulations, the numerical
integration procedures, and the parameterizations of the subgrid-scale and PBL turbulence
processes in the ARPS have been described in this paper. The dynamical and numerical framework
of the model is verified against known solutions of mountain waves and an observed severe
downslope windstorm. It is also verified using a grid-converged solution of a nonlinear density
current. The results of the latter also clearly demonstrate the superiority of a high-order monotonic
advection scheme over conventional schemes that are commonly employed in atmospheric models.

We believe the use of the generalized coordinate transform with horizontal stretching, the
treatment of terms related to terrain-following coordinate for truncation error reduction, the
formulation of conservative high-order advection terms, the implementation of monotonic advection
for scalars, the coupling of PBL with ‘free atmosphere' turbulence, the coupling of soil-vegetation
model, surface layer, PBL and atmospheric radiation, as well as the computational implementation
of the system have their unique aspects compared to other regiona atmospheric prediction models.
The numerical framework and the computational paradigm that have been established provide a
solid foundation upon which future improvements can be rapidly implemented.

It should be pointed out that only the forward time integration components of the ARPS
model system have been described here. The complete forecast system includes real time data
ingest, data analysis, retrieval and assimilation components (Brewster, 1996; Shapiro et a., 1996),
the 4D adjoint based data assimilation system (Wang et al., 1995), as well as a platform-independent
post-processing package. A complete description of these components is outside the scope of this
paper.

More detailed description of the coupled soil-vegetation model, the treatment of surface
layer fluxes, the microphysics and cumulus parameterizations, and the radiation scheme used in the
ARPS will be presented in Part Il of this paper series. Additional verification experiments and an
application of the model to the simulation of a multi-scale event containing multiple tornadic
supercell storms and an intense long-lived squall line can aso be found there. The source code and
the online documentations of the ARPS are available at http://www.caps.ou.edu/ARPS.
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Appendix A. Definition of symbols

I, I, 3, Ia, A/G

K,
KK,

m?

22 003TD Zz3m—

Specific heat of dry air at constant pressure (Jkg™* K™);

¢, = (YRT)"2, the full acoustic wave speed (m s%);

Specific heat of dry air at constant volume (Jkg™* K™);

Deformation tensors (s™);

Coriolis parameters. f=242 sin(¢) and f =20 cos(¢) (s*) where ¢ isthe earth latitude;
Acceleration due to gravity (m s?);

Turbulence heat or moisture fluxes (kg K m? s%);

Coordinate transformation Jacobians (ND);

RC,’

Turbulence mixing coefficient for momentum and scalars, respectively (m? s%);
Turbulent mixing length (m);

Latent heat of evaporation;

Map projection factor (ND);

Dry or moist Brunt-V &séil4 frequency, depending on local static stability (sY);
Total, base-state and perturbation pressure (Pascal);

Turbulent Prandtl number (ND);
Generic form of water vapor and other hydrometeor species (kg kg™);

Adiabatic heating rate (K s™);

Hail/grapaul mixing ratio (kg kg™);

Cloud ice mixing ratio (kg kg™):

Total liquid and ice water mixing ratio (kg kg™);

Rain water vapor mixing ratio (K kg'™):

Snow mixing ratio (kg kg™):

Water vapor mixing ratio (Kg kg™):

Saturation water vapor mixing ratio (kg kg™);

Gas constant for dry air (Jkg* K™);

Gas constant for water vapor (Jkg* K™);

Total, base-state and perturbation temperature (K);

Cartesian velocity componentsin X, y and z directions (m s™);
Contravariant velocity compomentsin & 7 and ¢ directions (m s%);
Cartesian coordinates (m);

Angular rotation rate of the earth (s™);

R/R;

Total, base-state and perturbation Exner function. 7t = (p/po)*¥? and py=10° Pascal;
Equivalent potential temperature (K);

Total, base-state and perturbation potential temperature (K);

pIG (kgm?);

Total, base-state and perturbation density (kg m™);

Stress tensors (kg m™ s?);

Coordinates in the computational space corresponding to x, y and z (m);
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Appendix B. Thevertically implicit solution of the p and w equations

When coefficient S is not zero, Egs. (3.4c) and (3.4d) become simultaneous equations for
two unknowns, w™**" and p'**** and can not be solved independently.
After regrouping the unknown terms, we rewrite the p-equation (3.4d) as

— —¢ — T+AT
P = pT+ATS [gp W —CIpX.Y, /\/Eagw] +F,, (B1)
where Fp includes other known terms;

AT t - — 2 ‘
Fp=ﬁ{fp+(1—ﬂ)p[£gw - cEx.y, 5] }

_ A7 pcint
JG
Substituting p' 747 in (B1) into w-equation (3.4c) and regrouping again yields

AT —¢ —— — T+AT
woe :FW—(ATIB)Zxéy,,/p 5§[gpw —cﬁpxgynlx/g §§w]

o L ——¢ — T+AT
[5§(qu/m)+§”(J4”v/m)+5§(J1u/m§ )+5§(J2v/m§ )}

(B2)

T+AT
— _—_§§ — e
~(8eB’9/ (pC )[gpw = 2 px.y, NG 5,w } ,
where the known terms on the RHS are grouped into F,, , which is
—¢ , T . \T
F,=w +Ar/p {fvﬁ = X:Y, §§( p'+ 3 Fp) —a: X:Y,0,(Div')

+ g[p*[e'/é—(p'w F,J)/(ﬁcs)ﬂ }

Eg. (B2) now has only one unknown, w47 | and the spatial averaging and differencing are
all performed in the vertical direction. Expressing the equation in an explicit finite difference form

yields a set of linear algebraic equations for w™*** at three adjacent vertical levels:

AW + B w ™ + G Wit =Dy, (B3)
wherek istheindex for vertical levels, and the known coefficients Ak, Bk, Cx and Di are

A= (Pk - Nk)(Mk—1+ Lk—l) )

B, =1+ N, (Mk -M,+ L+ Lk—l)

+R (M, +M, ;+L -L_,),

Ck :(Pk+ Nk)(Mk_ Lk)’

Dk = Fwk
where

R =(A78)0/ (@), N, = (AB) %y, /(AP ), M, = gp/2,and L, = pc? /(ACVG).

Equation (B3) forms a linear tridiagonal equation system and is solved using the Thomas
agorithm (e.g., Richtmyer and Morton, 1967) given upper and lower boundary conditions on w. For
arigid top, w = 0. For the radiation top boundary, the inverse transform of (D4) in Appendix D is
used as the condition. At the surface, w is obtained from the nonpermeable condition that requires
the flow to be parallel to the ground. Finaly, the w47 is substituted into Eq.(B1) to obtain p'7+47,
thus complete one small time step integration cycle.
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Appendix C. Second- and fourth-order centered advection formulation for u, v, w, and p'

The second- and fourth-order advection for 6 was given in EQ.(30). We present here the
formulations of ADVU, ADVV, ADVV, and ADVP for the advection of u,v,w, d and p'.

ADVU = i[m U’ 5u+V 5U)+W 54“
. (C1)
r -2 (0%, 0"+ 5,0 )+ W]
ADW:A[m (U* 5V+V* 5V)+W*n%"gi ) (C2)
+(1-1)|m (u 5v+v Ry )+W‘"§5vé:,
ADVW = 1 [m (_46 w+V 5w)+w 5w] (©3)
+(1-4)| m (U 52§w VIS W )+W 52”]
aovp=1[m (VG U °55p'§+»/_§”V°5,,P') +/G W°5zp'§] (Ca)

— £ 2% == 7 2n 3 2
vy m (FEU a0 +G Vv 5,07 ) + /G W 6,5 |,

It can be shown that the above advection formulation (M. Xue and S. J. Lin — unpublished
note 1991) for both second and fourth-order cases, exactly conserves the total kinetic energy and the
total variance of the advected scalars if the mass continuity equation differenced using consistent
second or fourth-order difference scheme is exactly satisfied. Under the same condition, it also
conserves the globa integral of the advected quantities themselves (e.g., domain integrated
momentum).

Appendix D. Implementation of radiation top boundary condition

The Klemp and Durran (1983) type wave-permeable (radiation) upper boundary condition is
implemented in the ARPS. The method is based on an analysis of linear hydrostatic mountain
waves. By requiring the downward energy transport by hydrostatic gravity waves to be zero, the
following relationship between the Fourier transformed amplitudes of w and p' at the top boundary
can be obtained:

R Np .

P2 = Tp nz-1 ! (Dl)
where N is the Brunt-Vaisala frequency and k = ,/k> +I2§ is the horizontal wavenumber with
- ~ k, A
K, :és n( kXZAX) and Kk, :Aiysin( Y y) being the discretized approximations to

wavenumbers ky and ky in x and y directions, respectively. In Eq.(D1), p,,, islocated one-half grid
level below the top boundary, while w1 islocated at the boundary. In the derivation, it is assumed
that the horizontal variation in the base-state, and hence, in the coefficients of the equation, is small
and can be neglected. Further, p,, , isapproximated to be the value at the w point.

Equation (B1) in Appendix B can be rewritten for level k=nz-2 as
p.,,=aw,,+bw,,+cC (D2)

nz-1
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— 27 — 27
gp Cspxgyn gp Cspxgyﬂ 'z
where a=A7 - , b=A7 + and c=F_ +p',,,. Note that we
ﬂ[ 2 VGac Pl 72 " Toas o+ P
have dropped the superscript 7+ Az for convenience. Performing a double Fourier transform on
(D2), and assuming that the coefficients are slowly varying functions of x and y, Eq.(D2) becomes

p,,=aw,,+bw_ ,+c. (D3)

nz-1 n
Eliminating p,, , from (D1) and (D3) yields
(a— %) W, ,+bw, ,+c=0 (D4)
which, after being transformed back into the physical space, serves as the top boundary condition
required by (B3). The pressure at the top boundary is then obtained from Eq.(D2).
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Table 1. List of mountain wave experiments

Linear Linear Nonlinear Boulder
Experiment Parameters hydrostatic | nonhydrostatici nonhydrostatic | Windstorm

(LH) (LNH) (NLNH) (WSTORM)

hm (M) 1 1 503 Real terrain
a (m) 10000 2000 2000 N.A.
Ax (M) 2000 400 400 1000
Az (m) 125 125 125 200
L (domain width, km) 576 460 460 512
H (domain depth, km) 24 24 24 28
At (9) 20 10 5 25
At (9) 5 1 1 25
Rayleigh damping 0.0015 0.0015 N.A. N.A.
coefficient (1/9)
Height damper starts (km) 12 12 N.A. N.A.
4th-order horizontal 0 0 3x10® 8x10™*
mixing coefficient (1/s)
Table 2. List of density current experiments
Advection scheme Spatial resolution (m)

400 200 100
2nd-order-centered 2nd400 2nd200 2nd100
4th-order-centered 4th400 4th200 4th100

2nd-order FCT FCT2nd400 FCT2nd200 FCT2nd100
4th-order FCT FCT4th400 FCT4th200 FCT4th100
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Fig.
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Fig.

Fig.

Fig.

List of Figures

1. Principal elements of the ARPS model system. These include the ARPS data assimilation
system (ARPSDAYS), the forward prediction component and the post-processing tools used for
product generation and forecast verification. ARPSDAS further includes the data ingest and
analysis component known as the ARPS data analysis system (ADAS), Doppler radar data
retrieval algorithms and the 4-D variational data assimilation system.

2. A schematic depicting the staggering of variables on a grid box. The derived quantities are
located so as to minimize spatial averaging in the finite difference calculations.

3. An illustration of ARPS computational grid based on the coordinate transformation relation
(2) with a hyperbolic-tangent stretching function in the vertical as described in Xue et d
(1995). In this example, the grid intervals increases with height and the coordinate surfaces
become flat above the 7 km level. The formulation of equations also allows stretching in the
horizontal directions.

4. Analytical solution of u' and w' (upper panel) and the model simulated solution at the ND
time of 100 from experiment LH (lower panel), which isfor linear hydrostatic mountain waves
over a1 m high bell-shaped mountain with a 10 km half width. Note that the mountain profile
in thick line has been amplified by afactor of 500 for illustration purpose.

5. Vertical profiles of horizontal momentum at indicated ND times from experiment LH, along
with the profile calculated from analytical solutions of u' and w' (thick line). All profiles are
normalized by the theoretical value for linear irrotational hydrostatic wavesin (35).

Fig. 6. Same as Fig. 3, except for experiment LHa, in which avertically stretched grid is used.

Fig.

7. Same as Fig. 3, except for experiment LHb, in which Klemp and Durran (1983) radiation
boundary condition is applied at the top boundary without a Rayleigh damping layer.

Fig. 8. Analytical solution of u' and w' (upper panel) and model simulated solution at the ND time of

Fig.

Fig.

Fig.

100 from experiment LNH (lower panel), which is for linear nonhydrostatic mountain waves
over a1 meter high bell-shaped mountain with a 2 km half width. Asin Fig. 3, the mountain
profile has been amplified by afactor of 500.

9. Simulated isentropes (@) and perturbation pressure (b) at the ND time of 100 from
experiment LNH, which is for linear nonhydrostatic mountain waves. The depiction of the
potential temperature perturbation has been amplified by a factor of 500, as has the mountain
profile.

10. Same as Fig. 4, except for experiment LNH, which is for linear nonhydrostatic mountain
waves.

11. Analytical solution of u' and w' (upper panel) and model simulated solution at the ND time
of 100 from experiment NLNH (lower panel) which is for finite-amplitude (nonlinear)
nonhydrostatic mountain waves over a 503 meter high mountain whose profile satisfies ¢ (z=h)
= h, where ¢ isthe solution of EQ.(33) for a bell-shaped mountain with a2 km half width. The
mountain profile in thick line has its peak shifted upstream by about 400 m from the peak of
original bell-shaped mountain.
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Fig.

12. Simulated isentropes () and perturbation pressure (b) at the ND time of 100 from
experiment NLNH, which is for nonlinear nonhydrostatic mountain waves.

13. Same as Fig. 4, except for experiment NLNH, which is for nonlinear nonhydrostatic
mountain waves.

14. 1200 UTC, 11 Jaunary 1972 Grand Junction, CO sounding used in the Boulder downslope
windstorm simulations.

15. Isentropes (left panel) and u field (right panel) a hour 3 and 6 of the 2D simulation of
downslope windstorm using Grand Junction, CO sounding of 1200 UTC, 11 January 1972 and
a high-resolution east-west terrain profile through Boulder, CO. Regions between 6=296K and
316K one the left and where U> 30 ms* are shaded. Only a portion of the 512x28 km
integration domain is shown.

16. 6' contours from the 25 m resolution reference simulation, at (a) 0, (b) 600, and (c) 900 s.
Contour interval is 1°C. Only a portion of the 25.6x6.4 km? domain is shown. The figure
shows that an oval shaped initial cold blob drops to the ground and spread along the ground in
the form of density current. Kelvin-Helmholtz billows develop along the upper surface the cold
pool.

17. Fidlds of @ at 900 s from the 400 m resolution experiments (a) 2nd400, (b) 4th400, (c)
FCT400, (d) MP400 and (e) the 25 m reference run. The reference solution has been averaged
to the 400 m grid.

18. Asin Figure 13, but for the set of 200 m resolution experiments.
19. Asin Figure 13, but for the set of 100 m resolution experiments.
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Fig. 2. A schematic depicting the staggering of variables on a grid box. The derived
guantities are located so as to minimize spatial averaging in the finite difference
calculations.
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Fig. 3. An illustration of ARPS computational grid based on the coordinate
transformation relation (2) with a hyperbolic-tangent stretching function in the
vertical as described in Xue et al (1995). In this example, the grid intervals increases
with height and the coordinate surfaces become flat above the 7 km level. The
formulation of equations also allows stretching in the horizontal directions.
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Fig. 4. Analytical solution of u' and w' (upper panel) and the model simulated solution at the ND
time of 100 from experiment LH (lower panel), which isfor linear hydrostatic mountain waves over
a1l m high bell-shaped mountain with a 10 km half width. Note that the mountain profile in thick
line has been amplified by afactor of 500 for illustration purpose.
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Fig. 5. Vertical profiles of horizontal momentum at indicated ND times from experiment LH, along
with the profile calculated from analytical solutions of u' and w' (thick line). All profiles are
normalized by the theoretical value for linear irrotational hydrostatic wavesin (35).
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Fig. 6. Same as Fig. 4, except for experiment LHa, in which a
vertically stretched grid is used.
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Fig. 8. Analytical solution of u' and w' (upper panel) and model simulated solution at the ND time
of 100 from experiment LNH (lower panel), which isfor linear nonhydrostatic mountain waves over
a 1 meter high bell-shaped mountain with a 2 km half width. Asin Fig. 4, the mountain profile has
been amplified by afactor of 500.

L ! L ! o hY
6.4 I 6.4 12.8 . ' 6.4 0.0 6.4 19.2
Min=246. Max=401. Inc=5.00 Min=-.369 Max=0.285 Inc=0.500E-01

Fig. 9. Simulated isentropes (a) and perturbation pressure (b) at the ND time of 100 from
experiment LNH, which is for linear nonhydrostatic mountain waves. The depiction of the potential
temperature perturbation has been amplified by a factor of 500, as has the mountain profile.
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Fig. 10. Same as Fig. 5, except for experiment LNH, which is for
linear nonhydrostatic mountain waves.

Analytic solution of u’ (m/s)

i

Analytic solutoin of w’' (m/s)

120

12.0

1 1
6.4 . . . . ’ -6.4 0.0 6.4 12.8 19.2

Min=-8.25 Max=8.60 Inc=1.00 Min=-4.03 Max=3.23 Inc=0.500
ed u’ (m/s) at T=100.0 Simulated w’ (m/s) at T=100.0

12.0 grrrreeye S'm”\!ﬁt

e 12.0 e

(

- 1 1 = L
-6.4 0.0 6.4 12.8 19.2 ’ -6.4 0.0 6.4 128 19.2
Min=-7.87 Max=28.40 Inc=1.00 Min=-4.02 Max=3.22 Inc=0.500

Fig. 11. Analytical solution of u' and w' (upper panel) and model simulated solution at the ND time
of 100 from experiment NLNH (lower panel) which is for finite-amplitude (nonlinear)
nonhydrostatic mountain waves over a 503 meter high mountain whose profile satisfies 6 (z=h) = h,
where ¢ is the solution of EQ.(33) for a bell-shaped mountain with a 2 km half width. The
mountain profile in thick line has its peak shifted upstream by about 400 m from the peak of
original bell-shaped mountain.
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Fig. 14. 1200 UTC, 11 Jaunary 1972 Grand Junction, CO sounding used
in the Boulder downslope windstorm simulations.
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downslope windstorm using Grand Junction, CO sounding of 1200 UTC, 11 January 1972 and a
high-resolution east-west terrain profile through Boulder, CO. Regions between 6=296K and 316K

one the left and where U > 30 ms™ are shaded. Only a portion of the 512x28 km integration domain
is shown.
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Fig. 17. Felds of @ at 900 s from the 400 m
resolution experiments (a) 2nd400, (b) 4th400,
(c) FCT400, (d) MP400 and (e) the 25 m
reference run. The reference solution has been
averaged to the 400 m grid.
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Fig. 18. Asin Fig. 17, but for the set of 200 m

resolution experiments.
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Fig. 19. Asin Fig. 17, but for the set of 100 m

resolution experiments.



