WRFvsLES; extremelyHighPBL_O3
Observations
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Locations of US upper air stations
Date: Year: Month:
month:
Domain:
Domain4MADIS:
Site:
Variables:



Univ. of Oklahoma, CAPS
Comments to Xiao-Ming Hu?





 

Simulations
WRF Version or impinging angle
PBL scheme
Initiation Time
Domain:
Variables:

speed:
toggle



 
University of Oklahoma, CAPS
Xiaoming Hu
Comments?


Previous work:
Hu, X.-M., M. Xue, and X. Li (2019), The Use of High-Resolution Sounding Data to Evaluate and Optimize Non-Local PBL Schemes for Simulating the Slightly Stable Upper Convective Boundary Layer. Mon. Wea. Rev., doi:10.1175/MWR-D-19-0085.1.
moved to WRF_1D.html
Fig 1 PBL diagnose example
Fig 2 domain configuration
Fig 3 composite profile
Fig 4 analytic solution
Fig 5 1D temp profile; with values
Fig 6 1D flux profile
Fig 7 profile 14 cases
Fig 8 spatial overlay
Fig 9 profile 2 cases; with values
Fig 10 composite sim vs obs; with values

Hu, X.-M., et al. (2014), Impact of the Loess Plateau on the Atmospheric Boundary Layer Structure and Air Quality in the North China Plain: A Case Study, Science of the Total Environment
Fig 1, domain NOx emi (Terrain)
Fig 2,TS jpg, eps (ref no good jpg, eps)
Fig 3, profile png eps (with CMAQ no CMAQ)
Fig 4, spatial PBLH 3.5.1 adjust Tlat eps (3.5 at2time)
Fig 5, Weather map pdf
Fig 6, HFX png eps
Fig 7, 850hpa png eps
Fig 8, TS at other sites png eps
Fig 9 Cross png eps

Miao, Y.*, X.-M. Hu, et al. (2015), Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality, J. Adv. Model. Earth Syst., DOI:10.1002/2015MS000522. BTH

Hu, X.-M., X. Li et al. (2016), The Formation of Barrier Winds East of the Loess Plateau and their Effects on Dispersion Conditions in the North China Plains, Bound.-layer meteor., DOI:10.1007/s10546-016-0159-4
Code backup from boomer
Fig 1,spatial wind, haze capitalized; old; NCL code
Fig 2 ERA climatology wind
Fig 3 combine 150, 30
Fig 4 combine all directions 3, 9 m/s
Fig 5 Coriolis constant