2	the contiguous United States
3	
4	Xiao-Ming Hu ^{1,2} , Ming Xue ^{1,2} , Lan Gao ² , and Sean Crowell ³
5	¹ Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
6	73072, USA
7	² School of Meteorology, University of Oklahoma, Norman, Oklahoma 73072, USA
8	³ GeoCarb Mission, University of Oklahoma, Norman, Oklahoma 73072, USA
9	To be submitted to JAMES
10	Updated on 12/17/21 9:44 AM
11	
12	Abstract

1 Impact of 2019 mid-west flood on CO₂ and CH₄ using yearly WRF-GHG simulations over

Sources and sinks of the two most important greenhouse gases CO₂ and CH₄ at regional to 13 14 continental scales remain poorly understood. In our previous work, the WRF-VPRM, a weatherbiosphere-online-coupled model in which the biogenic CO₂ fluxes are handled by the Vegetation 15 Photosynthesis and Respiration Model (VPRM), was further developed by coupling with the 16 17 CarbonTracker global CO₂ simulation and incorporating optimized terrestrial CO₂ flux parameterization (Hu et al., 2021; Hu et al., 2020). In this work, an enhanced version of WRF-18 19 VPRM by including CH₄ (referred to as WRF-GHG hereafter) is further developed by coupling 20 with the Copernicus Atmosphere Monitoring Service (CAMS) CH₄ global simulation for the initial and boundary conditions and the WetCHARTs wetland CH4 emissions and NEI2017 anthropogenic 21 22 CH₄ emissions, which dominate emissions over the contiguous United States (CONUS). Yearly 23 WRF-GHG simulations are conducted for year 2018 and 2019 over CONUS at a horizontal grid 24 spacing of 12 km to examine the impact of 2019 abnormal mid-west precipitation on CO₂ and CH₄ 25 fluxes and atmospheric concentrations, with the simulation for 2018 serving as a baseline for 26 comparison, similarly to Yin et al (2020). Simulated CO_2 and CH_4 are evaluated using remotely 27 sensed data from Total Carbon Column Observing Network (TCCON), OCO-2, TROPOMI, and 28 in-situ measurements from the GLOBALVIEW obspack data. WRF-GHG has been shown to 29 capture the monthly variation of column-averaged CO₂ concentrations (XCO₂) and episodic variations associated with frontal passages. In this work, we will show that TCCON XCH₄ shows 30 31 mild seasonal variation and more prominent episodic variations, which are captured by WRF-GHG. 32 As a case study, the 2019 May flood delayed growing season in mid-west and the typical spring 33 and summer drawdown of atmospheric CO₂ by 1-3 weeks. Obspack and TROPOMI data indicate 34 higher CH₄ in the mid-west in July and August, in 2019 relative to 2018, which we hypothesize is related to the abnormal precipitation in 2019 in the region that induces more wetland CH4 35 36 emissions. The WRF-GHG model significantly underestimates CH₄ concentration in mid-west in summer 2019 when the WetCHARTs wetland CH4 emissions are driven by ERA-Interim 37 38 reanalysis precipitation, which is known to be underestimated. An updated WetCHARTs wetland 39 CH₄ emissions driven by the PRISM precipitation data are currently being produced at JPL, which 40 are expected to reduce the WRF-GHG CH₄ bias, as wetland fluxes are highly sensitive to 41 inundation from precipitation.

42

43 There are a few innovation points in this story: 1. impact of 2019 flood on CO_2 is for the 44 first time examined using a weather-biosphere-online-coupled model, 2. WRF-GHG is applied to

45 continental scale to examine year-long CH_4 that is affected dominantly by both wetland and 46 anthropogenic CH_4 emissions for the 1st time.

47

48 A nested-domain WRF-GHG simulation is conducted with the 2nd domain with a grid 49 spacing of 800 m covering Southwest Oklahoma to examine CH₄ plumes from point sources. 50 Impact of diurnal variation of the atmospheric boundary layer on CH₄ plumes is demonstrated.

- 51
- 52
- 53

2019 Jun mean

SIF_740nm, W/m^2/sr/µm

2.4 **W/m^2/sr/**μm SIF_740nm, W/m^2/sr/μm 0 0.2 0.4 2019 Sep mean

8

-0.3 -0.2 -0.1 0

0.1 0.2 0.3

-0.3 -0.2 -0.1

0

0.1 0.2 0.3

I compared WRF-GHG with the obspack surface-insitu CH4 dataset, and got mixed agreements,
 see 3 categories of agreements below:

Good agreements at

134 ESP: A Canada site near northwest corner of USA: (3 sensitivity simulations are shown below)

136 Mt. Bachelor Observatory, Oregon [MBO]:

138 West Branch, Iowa, United States [WBI] :

140 Niwot Ridge, Colorado [NWR]:

148 • median agreement at:

149 Canada Northeast:

154 Beech Island, South Carolina [SCT]:

12

11

10 11 12

5

7 8 9

Month in 2019

10

Month in 2016

156 Moody, Texas, United States [WKT]:

158 Marcellus Pennsylvania, United States [MRC]:

- 183 Xiao-Ming Hu

186 **References:**

- Hu, X.-M., Gourdji, S. M., Davis, K. J., Wang, Q., Zhang, Y., Xue, M., . . . Crowell, S. M. R. (2021).
 Implementation of improved parameterization of terrestrial flux in WRF-VPRM improves
 the simulation of nighttime CO2 peaks and a daytime CO2 band ahead of a cold front.
- *Journal of Geophysical Research: Atmospheres*, e2020JD034362.
- 191 https://doi.org/10.1029/2020JD034362
- 192 Hu, X. M., Crowell, S., Wang, Q., Zhang, Y., Davis, K. J., Xue, M., . . . DiGangi, J. P. (2020).
- 193 Dynamical Downscaling of CO2 in 2016 Over the Contiguous United States Using WRF -
- 194 VPRM, a Weather Biosphere Online Coupled Model. Journal of Advances in
- 195 *Modeling Earth Systems, 12*(4), e2019MS001875. 10.1029/2019ms001875
- 196