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2. public summary 
The U.S. Great Plains is known for frequent hazardous convective weather and climate extremes.  

Across this region, climate change is expected to cause more severe droughts, more intense 

heavy rainfall events, and subsequently more flooding episodes.  These potential changes in 

climate will adversely affect habitats, ecosystems, and landscapes as well as the fish and wildlife 

they support.  Better understanding and simulation of regional precipitation can help natural 

resource managers mitigate and adapt to these adverse impacts.   

In this project, we aim to achieve a better precipitation downscaling in the Great Plains with the 

Weather Research and Forecast (WRF) model and use the high quality dynamic downscaling 

results (with a 4km horizontal resolution) to investigate the precipitation variability near the 

Edwards Plateau and Balcones Escarpment in Texas, an area prone to heavy rain and devastating 

flood events.  

To this end, WRF simulations with different physics schemes and nudging strategies are first 

conducted for a representative warm season.  Results show that simply choosing different 

physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is 

related to an anticyclonic circulation anomaly over the central and western parts of continental 
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U.S. in the simulations.  Spectral nudging emerges as an effective solution for alleviating the 

precipitation bias.  As a result, a better precipitation downscaling is achieved.  With the carefully 

designed configurations, WRF downscaling is conducted for 1980-2015.  The downscaling 

captures well the spatial distribution of monthly climatology precipitation and the 

monthly/yearly variability, showing improvement over at least two previously published 

precipitation downscaling studies. With the improved precipitation downscaling, a better 

hydrological simulation over the trans-state Oologah watershed is also achieved.  In addition, 

analyzing the high-resolution (4 km) downscaling outputs leads to a better understanding 

regarding the precipitation variability in Texas.  

 

3. technical summary 
Detailed, regional climate projections, particularly for precipitation, are critical for many 

applications, including hydrologic assessment.  Accurate precipitation downscaling in the United 

States Great Plains remains a great challenge for most Regional Climate Models, particularly for 

warm months.  Most previous dynamic downscaling simulations significantly underestimate 

warm-season precipitation in the region.   

This study aims to first achieve a better precipitation downscaling in the Great Plains 

with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with 

different physics schemes and nudging strategies are first conducted for a representative warm 

season.  Results show that different cumulus schemes lead to more pronounced difference in 

simulated precipitation than other tested physics schemes.  Simply choosing different physics 

schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to 

an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the 

simulations.  Spectral nudging emerges as an effective solution for alleviating the precipitation 

bias.  Spectral nudging ensures that large and synoptic-scale circulations are faithfully 

reproduced while still allowing WRF to develop small-scale dynamics, thus effectively 

suppressing the large-scale circulation anomaly in the downscaling.  As a result, a better 

precipitation downscaling is achieved.  With the carefully validated configurations, WRF 

downscaling is conducted for 1980-2015.  The downscaling captures well the spatial distribution 

of monthly climatology precipitation and the monthly/yearly variability, showing improvement 

over at least two previously published precipitation downscaling studies. With the improved 
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precipitation downscaling, a better hydrological simulation over the trans-state Oologah 

watershed is also achieved. 

In addition, high resolution (4km) dynamic downscaling results were used to investigate 

the precipitation variability near the Edwards Plateau and Balcones Escarpment in Texas, an area 

prone to heavy rain and devastating flood events.  Analysis results indicate that the total August 

precipitation east of the Balcones Escarpment is suppressed and precipitation over the eastern 

part of the Edwards Plateau is enhanced. Locally initiated moist convection in the afternoon 

contributes most to the total precipitation during August in the region. The dynamic downscaling 

output captures the spatial pattern of afternoon precipitation, which is well aligned with the 

simulated upward motions. The clay-based soil types that dominate the Edwards Plateau have 

great potential to retain soil moisture and limit latent heat fluxes, consequently leading to higher 

sensible heat flux than over the plain to the east. As a result, vertical motion is induced, 

triggering the afternoon moist convection over the Edwards Plateau under favorable conditions. 

In comparison, the sloping terrain plays a smaller role in triggering the convection. 

 

4. purpose and objectives 
Across the Southern Great Plains, climate change is expected to cause more severe droughts, 

more intense heavy rainfall events, and subsequently more flooding episodes. These potential 

changes in climate will adversely affect habitats, ecosystems, and landscapes as well as the fish 

and wildlife they support. Better projections of regional precipitation and hydrological response 

in future climates will help mitigate these adverse impacts. Warm-season convective 

precipitation is a major driver of the hydrological cycle across the Plains, but convection is very 

difficult to predict accurately, especially when using today’s global climate models (GCMs) 

whose typical grid cells (50 to 100 km) are larger than the sizes of convective storms. To 

explicitly resolve convection, a horizontal grid spacing of 4 km or less is needed. As a result, the 

projection of precipitation and hydrological cycles based on GCMs tend to be unreliable. 

Given these challenges, this project (Informing Hydrologic Planning in the Red River Valley 

through Improved Regional Climate Projections) addressed the over-arching theme of the 

South-Central Climate Science Center (SC-CSC) solicitation, “Precipitation Variability” within 

the region, by: (i) establishing high-resolution regional climate dynamic downscaling capabilities 

that can more accurately simulate precipitation-related variability and trends, (ii) applying these 
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climate downscaling for long-term hydrological planning for the South-Central region.  By using 

a convection-permitting resolution, precipitation and its hydrological response can be much more 

accurately simulated, which is critical for more accurately quantifying the impacts of climate 

change on agriculture, fish and wildlife, water availability and quality, all of which are key 

challenges facing the Landscape Conservation Cooperatives (LCCs) of the region.  

5. approach 
a) Precipitation observations 

The Stage IV precipitation data [Lin, 2011] have been archived continuously since January 2002, 

and they are available via http://data.eol.ucar.edu/codiac/dss/id=21.093.  The precipitation data have a 

consistent analysis record length of 15 years, and have high temporal and spatial resolutions that are 

valuable to this study [Herman and Schumacher, 2016].  The Stage IV data combine the mosaicked 

hourly/6-hourly multi-sensor (i.e., radars and gauges) precipitation analyses (called Stage III) produced 

by the 12 River Forecast Centers of the National Weather Service. The data cover the contiguous United 

States (CONUS) and have a grid spacing of 4 km.  The products are available for hourly, 6-hourly, and 

daily intervals. Stage IV data display an overall agreement with surface observations, although the 

products have a tendency to underestimate both annual and seasonal means as compared to surface 

observations [Nelson et al., 2016].   

To make up the deficiency of relatively short record (15 years) of the Stage IV data, the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation 

dataset [Daly et al., 1994] is selected for a longer-term model evaluation.  PRISM produces 

monthly and annual average precipitation since 1895 (downloaded from 

http://www.prism.oregonstate.edu/) on regularly spaced grid cells over the CONUS domain 

at various spatial resolutions (800 m to 4 km) based on point measurements and a digital elevation 

model [Prat and Nelson, 2015].  We use the 4-km resolution monthly PRISM precipitation 

data in this study. Stage IV and PRISM data show similar spatial distributions of 

precipitation. 

b) Study Periods 
Our previous study [X Sun et al., 2016] and the NARCCAP regional climate simulations [Mearns 

et al., 2012] significantly underestimate warm-season precipitation over the Great Plains, corroborating 

the generally accepted conclusion that accurate downscaling of summer precipitation in this region 

remains a great challenge for most RCMs [Liang et al., 2006; F X Qiao and Liang, 2015; J L Wang and 

Kotamarthi, 2014].  Thus, to attain our goal of improving precipitation simulations over the Great Plains, 
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we first focus on a single summer season (June, July, and August, i.e., JJA).  We chose summer 2005 

because it had sufficient rainfall to compare with simulations; in fact, the summer of 2005 was much 

wetter over the Great Plains than spring or fall of 2005 [Ramsey et al., 2014].  A band of maximum 

precipitation over the Great Plains in JJA 2005 extended from north Texas northward to Kansas, where it 

peaked.  Previous downscaling for this period conducted by J L Wang and Kotamarthi [2014] also shows 

significant dry bias over the Great Plains.  

To investigate the possible model errors responsible for the bias in downscaled precipitation, we 

conduct a nearly exhaustive set of sensitivity experiments for the month of August 2005 using different 

combinations of physics parameterization schemes available within WRF. After we have identified the 

model configuration with the least precipitation bias for the Great Plains, we use it to dynamically 

downscale the NCEP/DOE R2 data [Kanamitsu et al., 2002; National Centers for Environmental 

Prediction National Weather Service Noaa U. S. Department of Commerce, 2000] for a 36-year period 

(1980-2015).  This period is selected to encompass the 25-year time span (1980-2004) of the NARCCAP 

experiments as well as more recent years.  In these multi-year downscaling simulations, the model is 

reinitialized every year following the approach of J L Wang and Kotamarthi [2014], but allowing for one 

extra month of spin-up, i.e., the model starts from 1 December of the previous year, runs for 13 months, 

and the outputs of the last 12 months are used for analysis. This reinitialization procedure allows for 

parallel executions of simulations for different years, improving the overall computational efficiency and 

turn around time on large parallel computers. We have compared results of reinitialized simulations with 

simulations continued from the end of the previous year; the differences are minimal as long as the 

spectral nudging is turned on because of the apparent lack of the initial condition memory beyond one 

month, in these simulations that are primarily forced at the lateral boundaries and interiorly nudged to the 

reanalysis data for long waves.  

c) Three-dimensional WRF simulations 
The WRF model has been used in a number of regional climate studies at various horizontal 

resolutions, including 12 to 50 km grid spacings [Bukovsky and Karoly, 2009; Leung et al., 2006; Lo et 

al., 2008; J L Wang and Kotamarthi, 2014; Wi et al., 2012; Y X Zhang et al., 2009].  Recently, it has been 

applied at the convection-permitting, 4-km grid spacing over large regions [Y Gao et al., 2012; H Lee et 

al., 2017; Andreas F. Prein et al., 2017; X Sun et al., 2016].  However, such long-term, high-resolution 

simulations over large domains are computational very expensive and are not necessarily free of biases [F 

X Qiao and Liang, 2015; X Sun et al., 2016]; in fact, the 4-km WRF simulations reported in Sun et al. 

(2016) share similar precipitation biases as coarser resolution simulations that we have produced (not 

shown). For these reasons, we apply in this study WRF version 3.8.1 at a 20-km grid spacing and use it to 

downscale from the NCEP/DOE R2 data over the CONUS domain (see Fig. 1b).  The model domain has 
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44 vertical layers extending from the surface to 100 hPa.  The control configuration for WRF includes the 

Dudhia shortwave radiation scheme [Dudhia, 1989], the rapid radiative transfer model (RRTM) [Mlawer 

et al., 1997] for longwave radiation, the Noah land surface model [Chen and Dudhia, 2001], the Yonsei 

University (YSU) boundary layer scheme [S Y Hong et al., 2006], the Grell-Freitas cumulus scheme 

[Grell and Freitas, 2014], and the Morrison microphysics scheme [Morrison et al., 2009].  No interior 

nudging is applied in the control configuration.   
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Fig. 1. (a) Precipitation peak time (in Local Standard Time, LST) in JJA 2005 calculated from 
the Stage IV precipitation data and (b) terrain height in the WRF modeling domain. The two 
rectangular boxes in panel (a) marks the areas of Rockies and Great Plains over where the 
diurnal variation of precipitation is examined and statistics of simulated precipitation are 
calculated.   

 

Based on the control simulation, we conduct sensitivity experiments with 9 cumulus, 20 

microphysics, 2 land surface, and 7 boundary-layer schemes (total 9+20+2+7=38 experiments) for 

summer 2005. These physics parameterization schemes have been shown to markedly affect downscaled 

precipitation output in previous studies [C Klein et al., 2015].  The full list and description of the 

parameterization schemes can be found at 

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.8/users_guide_chap5.htm#summary. To 

ensure that the forcing data does not affect our results significantly, we also conduct sensitivity 

simulations for summer 2005 using two other reanalysis data sets, i.e., the North American Regional 

Reanalysis (NARR) [Mesinger et al., 2006; National Centers for Environmental Prediction National 

Weather Service Noaa U. S. Department of Commerce, 2005] and the ERA-interim data [European 

Centre for Medium-Range Weather Forecasts, 2009].  Most importantly, we examine the impact of 

applying interior spectral nudging through experiments with and without the nudging.   

d) Hydrologic simulations with the VIC model 

Using simulations with the VIC model, L Qiao et al. [2014b] assessed the hydrological 

responses of the trans-state Oologah Lake watershed in the Great Plains to the historical and 

future downscaled output from NARCCAP.  The Oologah Lake watershed covers a typical 

tallgrass prairie with dominant land use of rangelands and farming lands extending from 

southeast Kansas to northeast Oklahoma in the southern Great Plains.  Warm season convective 

precipitation is a very important part of water inputs to the watershed.  Intervening flood and 

drought hazards are very common in the watershed due to the highly dynamic weather, which 

would be intensified in a changing climate.  Thus, improved climate projection and better 

assessment of hydrological response of this watershed is highly warranted for effective hazard 

mitigation, natural resource management and climate change adaptation [L Qiao et al., 2017; L 

Qiao et al., 2014a].  For these reasons, we conduct hydrological simulations using VIC model to 

assess the hydrological responses of the Oologah Lake watershed (particularly in terms of 

streamflow amplitudes) to the WRF-downscaled precipitation obtained in this study and to the 

NARCCAP WRFG-downscaled precipitation.  The VIC-simulated streamflow rates at the 

watershed outlet (the Verdigris River near Lenapah, Oklahoma) were initially calibrated and 
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validated at daily time scale using atmospheric forcing from the University of Washington’s 

gridded dataset [Maurer et al., 2002].  This dataset is similar to the PRISM dataset with the 

elevation effect considered.  The streamflow dataset is downloaded from the United States 

Geological Survey (USGS) water information website (http://waterdata.usgs.gov/nwis).  The 

VIC model, calibrated with the automatic procedure of SP-UCI (Shuffled complex with Principle 

component analysis) [Chu et al., 2011], simulates the observed streamflow in a high degree of 

agreement with NSCE (Nash-Sutcliffe Efficiency) of 0.74 and 0.8 respectively for 1990-1997 

(calibration) and 1968-1989 (validation).   More detailed configuration and performance of the 

VIC model simulations can be seen in L Qiao et al. [2014b]. 

6. project results 
6.1. Improvement of precipitation downscaling in summer 2005 

Our previous 10-year dynamic downscaling significantly underestimates warm-season 

precipitation over the Great Plains [X Sun et al., 2016].  The same issue also occurs with NARCCAP 25-

year downscaling, particularly with the WRFG member [Mearns et al., 2012].  To diagnose the issue, we 

first perform WRF simulations using NCEP/DOE R2 for JJA 2005.  Similar to Sun et al. (2016), the WRF 

model with the control configuration again significantly underestimates the precipitation over the Great 

Plain area (by -49.7%), especially over Kansas and Oklahoma (Fig. 2c), even though the configuration of 

this study is different from that used in Sun et al. (2016).  Results for the single month of August 2005 

(Fig. 3b) are similar to that of JJA.  Because regional WRF simulations have been shown to be sensitive 

to the uncertainties in the large-scale forcing [Michelson and Bao, 2008],  we also used two other 

reanalysis data sets (i.e., ERA-interim, and NARR) to drive the WRF downscaling.  Although sensitivities 

of the downscaling results to the reanalysis data sets are found, the spatial distribution of the downscaled 

precipitation is not improved with the use of different reanalysis forcing (Fig. 2).  With NARR, the Great 

Plains appear even drier (underestimated by -52%), with the precipitation over Nebraska significantly 

reduced.  These simulations indicate that the dry bias over the Great Plains seen in previous studies is not 

caused by a particular reanalysis product.  In addition, a similar dry bias in the Great Plains has also been 

reported from simulations using other regional climate models [Berg et al., 2013; Harris and Lin, 2014; 

M I Lee et al., 2007b; Ma et al., 2014] and speculated to be related to unrealistically strong coupling of 

convective processes to the surface heating over the Rocky Mountains and to abnormally slow eastward 

propagation of convective systems [S A Klein et al., 2006; M I Lee et al., 2007b; Tripathi and Dominguez, 

2013].   
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Fig. 2. Mean precipitation rate in JJA 2005 retrieved from (a) StageIV, (b) PRISM data, and 
dynamically downscaled with WRF from the (c) NCEP/DOE R2, (d) ERA-interim, and (e) 
NARR reanalysis data.  

To investigate if certain model physics parameterizations can alleviate the warm-season dry bias 

over the Great Plains, we ran a large set of sensitivity simulations with 9 cumulus schemes, 2 land surface 

models, 7 PBL schemes, and 20 microphysics schemes for a representative month (i.e., August 2005) 

when WRF simulations suffer severe dry bias over the southern Great Plains.  Unfortunately, all of these 

simulations show similar biases in terms of precipitation location (results from 3 sensitivity simulations 

are shown in Fig. 3b-d); that is, precipitation in Kansas, Oklahoma, and Texas is underestimated (similar 

as the JJA mean shown in Fig. 2) and precipitation in the Rockies is overestimated, thus shifting the 

southern Great Plains rain band northwestward, as is also reported in Sun et al. (2016) (see their Fig. 2). 
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Fig. 3. Mean precipitation rate in August 2005 retrieved from (a) the StageIV data and 
dynamically downscaled with WRF (b,c,d) with different physics schemes but no nudging, (e) 
with grid nudging, and (f) with spectral nudging. 

Over the past several years, the Center for Analysis and Prediction of Storms at the University of 

Oklahoma has been carrying out real-time numerical weather prediction (NWP) using the WRF model, 

with a focus on precipitation and severe weather [Kong et al., 2011; Xue et al., 2007; Xue et al., 2009; 

Xue et al., 2010]. In these real-time forecasts up to several days, systematic bias in precipitation location 

around the Great Plains does not occur.  Thus, we suspect that the bias in the regional climate simulations 

is rooted in the downscaling framework. The core differences between NWP and climate downscaling 

include: (1) different driving data (i.e., forecast data for NWP versus reanalysis data for downscaling of 

the historical period); and (2) different initialization strategies (i.e., daily reinitialization for short-term 

NWP versus a single initialization for continuous, long-range simulations).  However, reanalysis data 

should be generally more accurate than the forecast data used at the lateral boundaries because of all the 

observations assimilated into the reanalysis fields.  In addition, our simulations driven by different 

reanalysis datasets (Fig. 2) share similar precipitation biases.  Thus, it is unlikely that systematic biases in 

the driving reanalysis data caused the precipitation biases.   

Given the above discussions, we speculate that error accumulation within the long regional 

climate simulations as an important cause for the systematic precipitation bias.  To assess this speculation, 
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instead of initializing once and running the simulation for a full month of August, we reinitialize the 

simulations on a daily basis (similar to the NWP runs).  When the simulations are reinitialized daily, the 

southern Great Plains rain band is indeed much better reproduced, particularly in terms of its location 

(figure not shown).  The sensitivity to the initialization strategies indicates that model bias accumulated 

through the continuous (monthly, seasonally, or longer) climate simulations does appear to be a key 

reason for the simulated precipitation biases. For regional climate simulations, daily reinitialization from 

reanalysis is clearly not an acceptable strategy.  Ideally, the true source of model error causing the error 

accumulation is uncovered and an improvement to the model is implemented to reduce the error. 

Unfortunately, our exhaustive testing with different combination of model physics parameterizations did 

not give us much of a clue; finding a fix to the simulation model has to be left for further studies.  

In the absence of a true fix to the model bias, one possible solution to prevent the systematic 

solution drift is to nudge the large-scale fields within the simulation domain towards the external forcing. 

Interior nudging had proven successful previously in dynamical downscaling of regional climate [Hu et 

al., 2017; Huang et al., 2016; P Liu et al., 2012; Lo et al., 2008; Mabuchi et al., 2002; Miguez-Macho et 

al., 2004; Paul et al., 2016; Andreas F. Prein et al., 2017; Spero et al., 2014; von Storch et al., 2000].  

WRF supports two forms of interior nudging: analysis nudging (also called “grid nudging”) and spectral 

nudging [Miguez-Macho et al., 2004; 2005; J L Wang and Kotamarthi, 2013].  Analysis nudging adjusts 

simulations towards the driving fields (from the reanalysis or the GCM simulations) regardless of the 

scales of motion (thus also called indiscriminate nudging or non-scale-selective nudging) through adding 

a non-physical term to the model equation: 

!"
!#
= 𝐿 𝑄 − 𝐾(𝑄 − 𝑄*)                                                                                    (1) 

 where 𝑄 is any of the prognostic variables to be nudged, and 𝑄* is the corresponding variable from the 

driving fields, 𝐿 is the model physical forcing term (including advection, Coriolis effects, etc.), 𝐾 is the 

nudging coefficient, whose inverse is the e-folding time scale.  In contrast, spectral nudging forces only 

the long wavelengths of nudged variables toward the driving fields [Miguez-Macho et al., 2004] through 

!"
!#
= 𝐿 𝑄 − 𝐾|-|./|0|.1 ∙ (𝑄-0 − 𝑄*-0)𝑒4567𝑒4589 ,                        (2) 

where 𝑚  and 𝑛  are number of waves in x and y directions, respectively, across the model domain,  

𝑄-0 and 𝑄*-0 are the spectral coefficients of 𝑄  and 𝑄*  respectively. 𝑘-  and 𝑘0  are the wave vector 

components in the 𝑥 and 𝑦 directions, which are expressed in terms of discrete wave numbers 𝑚 and 𝑛 

and domain size 𝐷7 and 𝐷9 : 
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𝑘- = @A∙-
BC

; 𝑘0 =
@A∙0
BD

 .                                                                                       (3) 

Because the primary purpose of regional climate downscaling is to produce more smaller scale details not 

present in the driving large scale fields while trying to maintain a consistency between the downscale 

solutions and the driving fields at the large scales, spectral nudging is a reasonable choice for the 

downscaling purpose. Hence, we apply the spectral nudging configurations (including nudging variables, 

nudging strength, nudging height, wave number) suggested by J L Wang and Kotamarthi [2014] for their 

WRF-based downscaling.  Particularly we adopted nudging wave numbers of 5 and 3 in the zonal and 

meridional directions over CONUS, thus nudging long waves with wavelengths of ~1000 km to those of 

the driving fields.  The suggested nudging coefficient of 3´10-5 s-1 is adopted, which corresponds to a ~9 h 

time scale.  Stronger nudging with larger nudging coefficients on more wave numbers was shown to have 

a detrimental effect on downscaled precipitation over the Great Plains, particularly on the detailed 

structures of precipitation, since it may destroy the mesoscale features simulated by the dynamic model 

[Tian et al., 2017; J L Wang and Kotamarthi, 2014].  Gomez and Miguez-Macho [2017] explicitly suggest 

that 1000 km is the optimal scale threshold to nudge in order to balance the constrain from the driving 

fields and fine-scale contribution from the downscaling model.  

Still, to examine the impacts of nudging over all wavenumbers, we also performed downscaling 

experiments with grid nudging.  With either form of nudging, the simulated rain band location in the 

southern Great Plains during August 2005 is significantly improved (Fig. 3e-f). The model simulates 

more precipitation in Texas, Oklahoma, Kansas, and Missouri with either nudging than without, leading 

to a better agreement with the Stage IV data (Fig. 3a).  
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Fig. 4. Two-dimensional (2D) mean spectral variance of daily rainfall fields during August 2005 
from (a) StageIV, (b) WRF downscaling with grid nudging, (c) WRF downscaling with spectral 
nudging computed using the discrete cosine transform (DCT) over the selected domain shown in 
panel (e). The 2D spectrum is binned according to equivalent wavenumbers to produce (d) the 
power spectra solely as a function of equivalent wavenumber (but not direction). Note that the 
StageIV has a higher resolution (~4km) than WRF (20km), thus can resolve more high frequency 
waves than WRF. But to compare with WRF, the larger wavenumbers resolved by StageIV are 
not shown in panels a and d.  

Comparing to the spectral nudging, the grid nudging simulates wider spread precipitation with 

gentler spatial variations.  A spectral analysis of the observed and downscaled precipitation fields using 

the Discrete Cosine Transform (DCT, Denis et al. [2002]) is conducted to further illustrate the difference 

in the effects of two forms of nudging.  DCT is preferred over the Fourier transform for analyzing two-

dimensional (2D) atmospheric fields over limited-area domains and it was previously used to evaluate 

precipitation forecasts [Surcel et al., 2014].  2D DCT spectral variance are computed for observed (i.e., 

StageIV) and downscaled daily precipitation fields during August 2005 within a square domain over the 

Great Plains. This square domain (Fig. 4e) is selected for three reasons: (1) precipitation variation over 

the Great Plains is the focus of this study, (2) the domain needs to be within the coverage of the StageIV 

data in order to compute the spectra of StageIV observations, (3) DCT analysis over a square domain is 

simpler and easier to interpret than that over a rectangle domain.  The mean 2D spectral variance and the 

binned 1D power spectra during this month are shown in Fig. 4.  Both grid nudging and spectral nudging 
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underestimate the variance of daily precipitation over short waves (with wavelength < 600 km) and the 

underestimation by grid nudging is more severe.  The difference seen in Fig. 4 between grid nudging and 

spectral nudging can be explained by equations 1 and 2.  Grid nudging adjusts nudged variables towards 

the driving fields (i.e., the R2 reanalysis) regardless of the scales of motions.  Thus, the scale of motion 

resolved by the grid nudging is close to the R2 reanalysis (with a 2.5o grid spacing), for which the 

smallest resolvable wavelength in DCT algorithm is ~500 km (2 grid spacing).  Consequently, the smaller 

scale motion is damped during the grid nudging process.  In contrast, spectral nudging only forces the 

long waves (with wavenumber ≤ 5 and 3 in zonal and meridional directions over the simulation domain, 

roughly wavelength >1000 km) of nudged variables to the driving fields and allow the model dynamics to 

develop small scale motions.  Thus, the smallest resolvable wavelength in the DCT algorithm by the 

spectral nudging is 2 times model grid spacing, i.e., 40 km.  As a result, the power spectra for short waves 

(<500 km) of nudged variables is less underestimated by spectral nudging than grid nudging, as also 

previously reported [e.g., Gomez and Miguez-Macho, 2017; Otte et al., 2012; Vincent and Hahmann, 

2015].  Precipitation, an un-nudged variable, responses to the nudged variables and also shows significant 

underestimation by grid nudging at scales with wavelength <500km (Fig. 4d).  The spectral analysis thus 

further corroborates that spectral nudging is superior than grid nudging for dynamic downscaling. 

Given the superiority over the downscaling without nudging or with grid nudging, spectral 

nudging is also applied in the downscaling of JJA 2005. Much better precipitation simulation is again 

obtained with spectral nudging for these months over the southern Great Plains (Fig. 5a) than without 

(Fig. 2c), as compared to the Stage IV dataset (Fig. 2a).     
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Fig. 5. Mean precipitation rate in JJA 2005 dynamically downscaled with WRF with spectral 
nudging and with (a) the ACM2 PBL scheme and with different cumulus schemes, i.e., (b) BMJ 
(CU2), (c) KF (CU1), (d) Multi-scale KF (CU11), (e) Grell-Freitas (CU3), (f) Grell-3 (CU5), (g) 
Tiedtke (CU6), (h) new SAS (CU14). The corresponding observations are shown in Fig. 2a,b. 
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The benefit of spectral nudging lies in its ability to constrain the large-scale circulation patterns in 

the regional domain to match those of external forcing.  For example, Figure 6 shows the deviations of the 

simulated JJA mean circulation and geopotential height fields from those of NCEP R2 with and without 

spectral nudging.  Relative to the driving NCEP R2 reanalysis, an anomalous anticyclonic circulation 

develops in the simulation without spectral nudging over the southern Great Plains and southwest U.S. 

while an anomalous cyclonic circulation occupies the eastern coastal region (Fig. 6a).  The northerly wind 

anomaly in the eastern flank of the anticyclonic circulation anomaly effectively decreases the prevailing 

southerly flows over the Great Plains along the western edge of the Bermuda High (Fig. 7). 

Climatologically, these prevailing southerlies bring moisture from the Gulf of Mexico to the Great Plains 

[Arritt et al., 1997; Helfand and Schubert, 1995; Higgins et al., 1997].  Thus, the anticyclonic circulation 

anomaly that develops in the simulation without spectral nudging results in a decreased moisture supply 

(Fig. 7) and therefore suppressed precipitation over the southern Great Plains.  Meanwhile, the cyclonic 

circulation anomaly over the southeast US leads to excessive precipitation over the region (Fig. 2c).  

Spectral nudging successfully eliminates those spurious circulation anomalies (Fig. 6b), leading to a 

spatial distribution of precipitation (Fig. 5a) much closer to that observed (Fig. 2a). 

 
Fig. 6. Geopotential height difference during JJA 2005 between WRF downscaling and 
NCEP/DOE R2, (a) without and (b) with spectral nudge. 

 
Fig. 7. Downscaled water vapor mixing ratio (QVAPOR) and wind fields at 800 hPa during JJA 
2005 (a) without and (b) with spectral nudge. 
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  Note that the downscaled WRF simulations have systematically lower geopotential heights than 

NCEP/DOE R2 fields by about 20 m across the whole domain (Fig. 6). This bias may be due to different 

vertical coordinate systems between WRF and NCEP/DOE R2.  There are also some noisy differences of 

geopotential height between WRF and NCEP/DOE R2 along the boundary where mountains reside.  Note 

that terrain heights used in WRF are interpolated by the WRF Preprocessing System (WPS), which differ 

from that of the modeling system used to produce the reanalysis data; such differences are more 

pronounced in mountainous regions  [Gochis et al., 2003]. 

6.2. Impact of different physics schemes 
a) Impact on precipitation amount 

With the large-scale circulations more accurately simulated by applying spectral nudging, the 

sensitivity of regional climate downscaling to different physics schemes can be examined in a more 

meaningful way.  With spectral nudging always turned on, we run the JJA 2005 simulations with different 

physics parameterizations.  To show only the most important similarities and differences, Fig. 5 

highlights results from representative simulations for each parameterization category (e.g., PBL) or 

simulations with prominent differences from the base simulation.  Different cumulus schemes are found 

to lead to more pronounced differences than other physics schemes tested in terms of precipitation 

amounts over the Great Plains.  Previous studies [e.g., Argueso et al., 2011; Flaounas et al., 2011; Jankov 

et al., 2005; Lynn et al., 2009; Sikder and Hossain, 2016; C X Zhang et al., 2011] at non-convection-

permitting/resolving resolutions have also found stronger sensitivity of simulated cloud and precipitation 

to cumulus schemes than to other physics schemes such as the PBL, microphysics schemes.  In particular, 

the BMJ (CU2), new SAS (CU14) and Tiedtke (CU6) schemes simulate substantially lower precipitation 

over the Great Plains than other cumulus schemes (Fig. 5), which is consistent with F X Qiao and Liang 

[2015].  It was speculated that cumulus schemes originally developed and often used in coarse-resolution 

GCMs (e.g., Tiedtke in the ECMWF global model, new SAS in the NCEP’s Global Forecast System) are 

more likely to systematically underestimate the summer rainfall amount over the Great Plains [F X Qiao 

and Liang, 2015].  Recent modifications to the convective cloud-base mass flux, convective inhibition, 

and convective detrainment processes in the new SAS, some addressing scale dependency (scale 

awareness), were reported to lead to stronger precipitation and better-organized precipitation patterns, 

thus can potentially improve precipitation simulation [Kwon and Hong, 2017; Lim et al., 2014].  

The underestimated precipitation rate and widespread precipitation area produced by the BMJ 

scheme (Fig. 5b) agree with the well-known characteristic of the scheme.  The BMJ scheme uses a 

profile-relaxation approach to adjust the simulated sounding toward a post-convective reference profile 

[Betts, 1986; Betts and Miller, 1986; Janjic, 1994].  BMJ was previously reported to often lead to a too 

dry conditions  [Gochis et al., 2002; Jankov et al., 2005] and generate large areas of light rainfall while 
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severely underestimate summertime precipitation rates over US [Gallus, 1999] and Europe [Pieri et al., 

2015].  

Multi-scale KF (CU11) leads to lower precipitation (3.6 mm day-1, with NMB of -9.7%) over the 

Great Plains than the KF (CU1) scheme (4.14 mm day-1, with NMB of 3.1%), which is consistent with the 

original design of the multi-scale KF scheme to reduce the excessive precipitation sometimes presented in 

weather forecasts with the KF scheme [Zheng et al., 2016].  The KF scheme uses a mass flux approach to 

rearrange mass in an atmosphere column to remove at least 90% of the convective available potential 

energy (CAPE) [Kain, 2004].  Unlike the BMJ scheme that is primarily driven by the thermodynamics of 

the simulated sounding, thus is not directly impacted by vertical motion, the KF scheme is more 

influenced by surface convergence and the resulting vertical motion [Gallus, 1999].  Thus, KF can be 

more easily activated than the BMJ scheme and consequently leads to more precipitation than BMJ 

[Gochis et al., 2002].  Also KF may produce unrealistically deep saturated layers in post-convective 

sounding, which can lead to post-convective stratiform precipitation and overprediction of total 

precipitation [Pieri et al., 2015].  To mitigate the precipitation overprediction, Zheng et al. [2016] 

together with Herwehe et al. [2014] designed the multi-scale KF scheme by introducing a few changes to 

the KF scheme, including subgrid-scale cloud–radiation interactions, a dynamic adjustment time scale, 

impacts of cloud updraft mass fluxes on grid-scale vertical velocity, and scale-dependent lifting 

condensation level–based entrainment.  These changes appear to reduce precipitation as shown in Figs. 5c 

and 5d.   

Two variants of the Grell cumulus scheme (i.e., Grell-Freitas and Grell-3) are available in WRF, 

both of which are improved versions of a stochastic scheme originally implemented by Grell and Devenyi 

[2002].  The Grell-3 (CU5) scheme spreads subsidence on neighboring grid points while the Grell-Freitas 

(CU3) scheme is based on a scale-aware method recently introduced by A. Arakawa et al. [2011].  The 

Grell-Freitas (CU3) scheme leads to lower precipitation (3.7 mm day-1, with NMB of -6.8%) over the 

Great Plains than the Grell-3 (CU5) scheme (4.1 mm day-1, with NMB of 2.0%), which is different from 

the sensitivity over Brazil, where Grell-Freitas produced slightly (barely discernable) more precipitation 

than Grell-3 [Grell and Freitas, 2014].  The different sensitivity to Grell-Freitas and Grell-3 in different 

regions may be due to the different characteristics of precipitation.  Note that the simulations are 

conducted at a 20-km horizontal grid spacing in this study.  The benefit of the scale-aware Grell-Freitas 

scheme may be more appreciable when applied to gray-zone resolutions (defined as 1-10 km in Kwon and 

Hong [2017], 4-10km in A. F. Prein et al. [2015], 4-15km in Y Gao et al. [2017]) where the assumption 

of conventional cumulus schemes (that is, convective clouds cover only a small fraction of the model grid 

cell) starts to break down but moist convections are not completed resolved yet [Fowler et al., 2016].  

Note that the gray-zone here is framed from the perspective of cloud microphysics, which is different 
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from the gray-zone defined from the perspective of turbulence [Bryan et al., 2003; Shin and Hong, 2015; 

Wyngaard, 2004; Zhou et al., 2017].  

Different PBL schemes simulate different PBL thermodynamic and kinematic properties, which 

can cause differences in precipitation. In this case, however, altering PBL schemes does not lead to 

significant change in the precipitation amount (Fig. 5a).  The relationship between PBL properties and 

subsequent precipitation is complicated [C Klein et al., 2015; Trier et al., 2008], especially during the 

warm season in the Great Plains, where the precipitation may be influenced by mesoscale vertical 

circulation, eastward propagating convection, and large-scale moisture advection [Dai et al., 1999; 

Findell et al., 2011; Liang et al., 2006; Martynov et al., 2013; F X Qiao and Liang, 2015; Schumacher et 

al., 2013].  In addition, some PBL schemes have different treatments for stable and unstable boundary 

layers [Xiao-Ming Hu et al., 2010; Hu et al., 2013] and thus have different performances for different 

time of day, which further complicates the identification of the effect of different PBL schemes on 

precipitation.   

One key aspect of PBL schemes is their vertical mixing strength [Xiao-Ming Hu et al., 2010] 

which can be dictated by a few important parameters in the schemes [Hu et al., 2012; P M Klein et al., 

2016; Nielsen-Gammon et al., 2010].  We chose to examine the sensitivity of a critical parameter in the 

YSU scheme that controls the daytime vertical mixing strength (p, an exponent affecting the magnitude 

and vertical distribution of eddy diffusivity within the PBL) identified by X.-M. Hu et al. [2010].  Results 

show that larger values of p lead to weaker vertical mixing and lower PBL heights, consistent with the 

formulation of eddy diffusivity [Xiao-Ming Hu et al., 2010].  Consequently, lower PBL heights lead to 

more moisture near the surface and stronger CAPE in the afternoon.  As a result, more precipitation is 

predicted in the afternoon, especially in the mountains and southeast U.S. (not shown).  On the other 

hand, smaller values of p lead to higher PBL heights and consequently less precipitation.  This sensitivity 

of simulated precipitation to different simulated PBL heights is consistent with the previous study of Trier 

et al. [2011]. 

Altering microphysics schemes does not change the precipitation amounts markedly, except that 

the Kessler scheme significantly under-predicts precipitation over most of the continent (Figure not 

shown) likely due to its complete ignorance of important ice microphysical processes. 
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Fig. 8.  Diurnal variation of normalized rainfall rate during JJA 2005 over the (a) Rockies and (b) 
Great plains.  The hourly precipitation rate is normalized by the daily mean value, as in Liang et 
al. (2004b). 
	

b) Impact on the diurnal variation of precipitation 
Single-minded pursuit of the “best” performance in terms of total precipitation over the Great 

Plains may not be encouraged because some configurations may simulate the right amount of total 

precipitation but at wrong time.  As seen in Fig. 1a, the precipitation across the Great Plains has unique 

diurnal and spatial variations, the precipitation peaks during nighttime and generally moves from west to 

east. Figure 8 shows the performance of 10 selected physics configurations in terms of the diurnal 
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variation of precipitation over the Rockies and Great Plains (the exact areas are marked using two boxes 

in Fig. 1a).  Note that the hourly precipitation rate shown in Fig. 8 is normalized by the daily mean value, 

as in Liang et al. [2004]. Over the Rockies, all schemes predict peak precipitation in the afternoon, 

spanning from 1400-1700 local time, while the Stage IV product shows peak precipitation at 1500 local 

time (Fig. 8a).  In contrast, the sensitivity of diurnal variation of precipitation to different 

parameterization schemes (particularly cumulus schemes) over the Great Plains is more pronounced (Fig. 

8b).  Altering PBL and microphysics schemes does not change diurnal variation of precipitation 

significantly, while cumulus parameterization strongly affects the diurnal variation of precipitation. The 

Stage IV data shows a prominent diurnal variation of precipitation over the Great Plains with daytime 

minimum and nighttime peak.  The KF (CU1), BMJ (CU2), and Grell-3 (CU5) schemes erroneously 

place the peak precipitation over the Great Plains during the afternoon and miss the nighttime peak.  The 

Grell-Freitas (CU3), new SAS (CU14), Multi-scale KF (CU11), and Tiedtke (CU6) capture the nighttime 

peak over the Great Plains.  The behaviors of cumulus schemes are generally consistent with those seen in 

previous studies [Leung and Gao, 2016; Liang et al., 2004; Liang et al., 2006].   

In summary, all the cumulus schemes perform relatively well over the Rockies and perform 

markedly differently over the Great Plains in terms of reproducing the diurnal variation of precipitation.  

These different performances are related to the characteristics of precipitation in different regions.  Over 

the Rockies, the precipitation is dictated by (and peaks the same time as) boundary layer thermodynamic 

forcing such as surface fluxes and thermodynamic properties of the near-surface air, while the 

precipitation over the Great Plains is more governed by large-scale dynamic forcing such as free 

tropospheric advection/convergence [M I Lee et al., 2007a; G J Zhang, 2003] and Low-Level Jets 

[Harding et al., 2013].  It appears all the cumulus schemes perform fine over regions where precipitation 

is governed by boundary layer thermodynamic forcing, e.g., the Rockies (Fig. 8a) and the Southeast U.S. 

(figure not shown); while some cumulus schemes perform poorly over the Great Plains where peak 

precipitation is more in phase with large-scale forcing.  
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The closure assumption and trigger function adopted in cumulus schemes were reported to play a 

key role in dictating diurnal variation of precipitation [Choi et al., 2015; F X Qiao and Liang, 2015; Xie 

and Zhang, 2000; G J Zhang, 2002; 2003].  Those closure assumptions and trigger functions that couple 

moist convection too strongly with boundary layer thermodynamic forcing and too weakly with large-

scale forcing are likely to fail to accurately predict the observed nocturnal precipitation maxima over the 

Great Plains [Liang et al., 2004; F X Qiao and Liang, 2015; Xie and Zhang, 2000].  For the two worst 

cumulus schemes in terms of simulated precipitation diurnal variation (i.e., KF and BMJ), a previous 

study [F X Qiao and Liang, 2015] has shown that the closure assumption of an instantaneous relaxation 

of thermodynamic profiles toward an quasi-equilibrium reference state, used in BMJ [Baldwin et al., 

2002; Bukovsky et al., 2006; Janjic, 1994], and the assumption of CAPE being nearly completely 

removed by convection over a short time period (0.5-1 h), as in KF [Kain, 2004], are incapable of 

reproducing the correct timing of convection (i.e., the nighttime rainfall peak) in the Great Plains. Similar 

was also found by Clark et al. [2009] and Leung and Gao [2016] when comparing convection-allowing 

and convection-parameterized precipitation forecasts over the Great Plains. 

For four other schemes that perform better in terms of diurnal variation of precipitation (i.e., 

Grell-Freitas (CU3), new SAS (CU14), Multi-scale KF (CU11), and Tiedtke (CU6)), the closure 

treatments are different.  Grell-Freitas adopts a large-scale instability tendency closure, which is more 

sensitive to large-scale tropospheric forcing, in comparison to the KF scheme which is heavily influenced 

by the boundary layer forcing [Liang et al., 2004].  Thus, the Grell-Fritsch scheme performs better over 

the Great Plains where the diurnal timing of convection is influenced by the large-scale vertical motion 

[Dai et al., 1999].  For the new SAS scheme, a comprehensive convection trigger function is used, which 

evaluates two conditions for convection initiation: (1) the cloud base (defined as the level of free 

convection) must be within 150 hPa depth from the convection starting level (defined as the level of 

maximum moist static energy); and (2) the cloud work function (CWF) exceeds a critical CWF calculated 

as a function of the large-scale vertical velocity at the cloud base.  This comprehensive trigger function 

was found to play a key role in reproducing the diurnal variation of precipitation over the Great Plains [M 
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I Lee et al., 2008; Y C Wang et al., 2015]. The recent addition of the capability of scale-awareness to the 

KF scheme [Alapaty et al., 2012; Bullock et al., 2015; Zheng et al., 2016], resulting in the multi-scale KF 

scheme, appears to enhance its performance in terms of reproducing the diurnal variation of precipitation 

over the Great Plains.  The Tiedtke (CU6) scheme uses a trigger function based on the buoyancy of a 

undiluted parcel rising from near the surface and a CAPE removal closure based on large-scale 

convergence [Nordeng, 1995; C X Zhang et al., 2011]; it nicely reproduces the diurnal variation of 

precipitation (Fig. 8), but significantly underestimates total amount of precipitation over the Great Plains 

(Fig. 5g), similar to previously reported [F X Qiao and Liang, 2015].  

Precipitation from the Rockies to the Great Plains shows an eastward propagation (Fig. 1a, Fig. 

9a). The KF (CU1) and BMJ (CU2) schemes that predict afternoon precipitation peaks over both the 

Rockies and Great Plains, barely reproduce any eastward propagation of precipitation in the region (Fig. 

9b, c).  On the other hand, the schemes that better reproduce the diurnal variation of precipitation across 

the Rockies and Great Plains (e.g., Grell-Freitas (CU3), Tiedtke (CU6), Multi-scale KF (CU11), new SAS 

(CU14)) also better capture the eastward propagation of precipitation (Fig. 9d, e, g, h).  Particularly the 

scale-aware multi-scale KF scheme shows pronounced improvement over its non-scale-aware counterpart 

(i.e., KF).  
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Fig. 9. Diurnally average Hovmoller diagrams of normalized hourly precipitation during JJA 
2005 from (a) StageIV observed precipitation and WRF downscaling with different cumulus 
schemes, i.e., (b) BMJ (CU2), (c) KF (CU1), (d) Multi-scale KF (CU11), (e) Grell-Freitas 
(CU3), (f) Grell-3 (CU5), (g) Tiedtke (CU6), (h) new SAS (CU14). 
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6.3. 36-year (1980-2015) precipitation downscaling and comparison with the NARCCAP WRFG 
downscaling 

Using what we learned from the prior numerical experiments for summer 2005, we use the 

control configuration of WRF model but with the inclusion of spectral nudging (hereafter refer to as 

nudging_WRF) to downscale precipitation from NCEP/DOE R2 reanalysis for a 36-year period (1980-

2015).  Figures 10 and 11 compare the downscaled monthly climatological precipitation from January-

June and July-December, respectively, during the 36-year period with the PRISM precipitation data.  The 

downscaled results capture the spatial distribution of climatological precipitation amount for each month 

as well as the monthly variation.  Figure 12 shows the annual variation of precipitation amount over the 

Great Plains.  Overall, the WRF downscaling captures the yearly variation of precipitation amount over 

the Great Plains with a correlation of 0.743 with the PRISM dataset, and it over-predicts the precipitation 

amount with a mean bias (MB) of 0.055 mm day-1 and a normalized mean bias (NMB) of 2.4%. 
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Fig. 10. 36-year (1980-2015) monthly climatological precipitation (left) dynamically downscaled 
with nudging_WRF and (right) retrieved from the PRISM data for the month (top to bottom) 
January through June. 
 



 Page 27 of 54 

 

Fig. 11. Same as Fig. 10, but for the month (top to bottom) July through December. 
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Fig. 12. Time series of observed and downscaled yearly mean precipitation rate for the 36-year 
period (1980-2015) over the Great Plains region, which is marked in the black box in Fig. 1.  
	

We also compare the nudging_WRF downscaling results with those of the 25-year (1980-2004) 

NARCCAP WRFG to gauge the quality of downscaled precipitation.  Note that spectral nudging is not 

applied in NARCCAP WRFG [Mearns et al., 2012], and detailed configuration of WRFG can be found at 

http://www.narccap.ucar.edu/data/rcm-characteristics.html.  The first 25-year subset of nudging_WRF 

downscaling is compared with the PRISM dataset and NARCCAP WRFG downscaling in Figs. 13, and 

14.  NARCCAP WRFG significantly under-predicts the monthly climatological precipitation over the 

Great Plains, especially for May through October (Fig. 15).  In addition, in the months of July and 

August, NARCCAP WRFG simulates a spatial distribution of precipitation from the Rockies to Great 

Plains that is not correct (Fig. 14).  The PRISM data show more precipitation over the Great Plains than 

over the Rockies while NARCCAP WRFG barely simulates any precipitation over the Great Plains and 

precipitation that is too high over the Rockies.  The warm season dry biases of NARCCAP WRFG over 

the Great Plains may be related to the underestimated frequency of nocturnal southerly low-level jets 

[Tang et al., 2016].  As noted earlier, we saw similar poor performance in our previous downscaling 

experiments without spectral nudging [X Sun et al., 2016].  With a carefully designed configuration in this 

current study, however, nudging_WRF provides a better precipitation downscaling over CONUS in 

nearly every month (Figs. 13, 14), even though it moderately over-produces precipitation over the Great 
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Plains for certain months (particularly May and June, Fig. 15).  We are also able to substantially alleviate 

the bias in precipitation locations in warm months (particularly July and August), as compared with those 

in NARCCAP WRFG and Sun et al. (2016).  For example, the mean bias of precipitation of NARCCAP 

WRFG over the Great Plains (-0.723 mm day-1, -32.1%) is reduced to 0.092 mm day-1 (4.1%) in this 

study. 

 

Fig. 13. 25-year (1980-2004) monthly climatological precipitation dynamically downscaled (left) 
with nudging_WRF in this work and (right) with NARCCAP WRFG, and (middle) retrieved 
from the PRISM data for the month (top to bottom) January through June. 
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Fig. 14. Same as Fig. 13, but for the month (top to bottom) July through December. 

 
Fig. 15. Time series of monthly climatological precipitation rate during the 25-year period 
(1980-2004) over the Great Plains observed in the PRISM data and downscaled with 
nudging_WRF in this study and NARCCAP WRFG.  
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6.4 Impact of the improved downscaling on hydrological assessment 
L Qiao et al. [2014b] demonstrated large uncertainties in the hydrological response of the 

trans-state Oologah Lake watershed in the Great Plains to the NARCCAP-downscaled output.  

Here we examine the impact of our improved precipitation downscaling on the hydrological 

response in this watershed.   

We calculated monthly streamflow at the outlet of the Oologah Lake watershed for 1990-

1999 using the VIC model driven by either our improved precipitation downscaling or that of 

NARCCAP WRFG.  Due to the significant underestimation of precipitation over the Great Plains 

(Fig. 15), the NARCCAP WRFG-driven VIC simulation shows a significant underestimation of 

the streamflow at the watershed outlet (that is the Verdigris River near Lenapah, Oklahoma) over 

most of the time period.  Most significant underestimation occurs in years 1994, 1995, 1998, 

1999, and 1992-1993.  With the improved downscaled precipitation from this study, the 

simulated monthly streamflow rates have a much better agreement with observations.  The 

correlation between observed and simulated streamflow rates is improved from about 0.4 to 0.6 

and the normalized mean bias is improved from -75% to 28%. 

6.5 using downscaling results and precipitation data to investigate impact of Edwards Plateau 
on precipitation in Texas  

Using the above validated configuration, WRF downscaling simulations with a 4km 

resolution for August of 2002-2015 were conducted to investigate impact of Edwards Plateau on 

precipitation in Texas, together with the Stage IV precipitation data 
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Fig. 16. (a) Terrain height in Texas and (b) climatological precipitation in August during 2002-
2015 retrieved from the Stage IV data. The three main metropolitan areas located along the 
Balcones Escarpment, i.e., San Antonio, Austin, and Dallas-Fort Worth (DFW), are marked. 

 

Based on our analysis of 14-year (i.e., 2002-2015) Stage IV precipitation data, the impact 

of the Edwards Plateau on the spatial distribution of precipitation is most prominent in August 

(Fig. 16b), probably due to strong radiative heating and fewer disturbances by strong synoptic 

scale transient processes (e.g., synoptic cold fronts). In this month, the total precipitation east of 

the Balcones Escarpment is suppressed as compared to that across the Edwards Plateau. 

Particularly at 1500 Central Standard Time (CST) (2100 UTC), the precipitation maximum over 

the Edwards Plateau appears distinct from the elongated precipitation minimum east of the 

escarpment (Figure not shown).  The precipitation gradient corresponds to the terrain of the 

Edwards Plateau (more precisely, the position of the Balcones Escarpment), suggesting that the 

Edwards Plateau and Balcones Escarpment play some roles in modifying the spatial distribution 

of precipitation in the region.  

Mountains have been reported to affect precipitation in many places around the world 

through the mountains’ thermal effect or orographic forcing effect [e.g., Bao and Zhang, 2013; 

Carbone and Tuttle, 2008; Y X Gao et al., 1981; He and Zhang, 2010; X D Liu et al., 2009; J H 

Sun and Zhang, 2012; Tripoli and Cotton, 1989b; Q W Wang et al., 2016; Wolyn and Mckee, 

1994; Y C Zhang et al., 2014]. On a clear summer afternoon, because of absorption of strong 
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shortwave radiation, elevated terrain acts as a heat source, warming the near-surface air over the 

higher terrain as compared to adjacent, low-lying areas and producing a baroclinicity.  As a 

result, a shallow (~4 km AGL) solenoid develops, comprised of an upslope wind along the 

sloping terrain and a downward return flow over the adjacent, lower elevations. This thermally 

driven, local to regional scale circulation is commonly known as the Mountain-Plains Solenoid 

(MPS) circulation [Hu and Xue, 2016; Hu et al., 2014; Tripoli and Cotton, 1989a; Wolyn and 

Mckee, 1994]. During the night, due to radiative cooling, the thermal gradient between 

mountains and the adjacent low-laying ground is reversed, as is the MPS circulation. The upward 

branch of the MPS circulation (over the mountains during the day and over the adjacent low-

lying ground during the night) normally enhances precipitation [He and Zhang, 2010]. In most of 

the documented cases of precipitation modulation by the MPS circulation, the elevation 

difference (e.g., the Rockies, Tibetan Plateau, Loess Plateau) is greater than that between the 

Edwards Plateau and coastal plains. For the latter, the elevation difference is only 500-700 m 

(Fig. 16a). Thus, we need to carefully examine the possible causes of the precipitation maximum 

over the plateau. 
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Fig. 17. Mean hourly precipitation rate (in mm day–1) for August 2002-2015 (left) retrieved from 
the Stage IV data and (right) downscaled by WRF at (top) 0900 and (bottom) 1500 CST. 

 

Since the thermal effect of any mountains has distinct diurnal variation [He and Zhang, 

2010], simply focusing on the daily mean precipitation may obscure the different effects at 

different time of the day. Thus, we examined the frequency and rate (Fig. 17) of the hourly 

precipitation. Although the hourly precipitation rate is underestimated in the model simulations 

(as compared to the Stage IV data) at 0900 CST, the values and spatial patterns are realistic by 

1500 CST (Fig. 17). Precipitation over the Edwards Plateau showed a prominent diurnal 

variation, with a dominant peak in the afternoon (1500-1800 CST) and a secondary peak in the 

early morning, 0700-0900 CST (Fig. 18).  
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Fig. 18. Time series of hourly precipitation rate (in mm day–1) averaged over the Edwards 

Plateau domain marked by dashed lines in Fig. 17b.  

 

The smaller, early morning peak in precipitation results from the eastward propagation of 

mesoscale convective systems (MCSs) initiated in the Rockies on the previous afternoon. The 

eastward propagation of MCSs provides the dominant nighttime precipitation in the central 

United States [Dai et al., 1999; S A Klein et al., 2006; F X Qiao and Liang, 2015]. Because the 

Edwards Plateau is near the southern and eastern extent of the nighttime propagation of these 

mesoscale features off of the Rockies, it receives the associated precipitation during the early 

morning. The model successfully captures the timing of the eastward propagation of 

precipitation systems, but underestimates the precipitation intensity (Figs. 17c). It appears that 

the simulated precipitation maximum becomes weaker than observed during the eastward 

propagation process (Fig. 17a vs. 17c), leading to an early morning dry bias over Texas (Fig. 18), 

which is consistent with previously dynamic downscaling studies [Berg et al., 2013; Harris and 

Lin, 2014; S A Klein et al., 2006; M I Lee et al., 2007b; Ma et al., 2014; Tripathi and Dominguez, 

2013].  

The dominant afternoon peak is presumably due to the locally initiated moist convection 

[Liang et al., 2004]. Both the hourly frequency (Figure not shown) and amount (Fig. 17b) of 

afternoon precipitation shows a coherent spatial pattern, with most precipitation events occurring 

in the eastern half of the Edwards Plateau and the precipitation east of the Balcones Escarpment  

suppressed, consistent with the spatial distribution of daily mean precipitation shown in Fig. 16b. 

The consistency between the daily mean precipitation and afternoon hourly precipitation 
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indicates that the afternoon moist convection plays a dominant role in determining the spatial 

distribution of precipitation over this region of Texas in August. The dynamic downscaling 

results capture the spatial pattern of both afternoon precipitation frequency and amount. 

Although the simulations significantly overestimate precipitation frequency, the model accounts 

for all non-zero precipitation while very light precipitation may not be recorded in the Stage IV 

data; this may partially explain the overestimation of frequency of afternoon precipitation in the 

model.  

By examining the resemblance between hourly precipitation patterns and topography, the 

Edwards Plateau and Balcones Escarpment appear to play a great role in modulating afternoon 

precipitation, i.e., in enhancing the afternoon precipitation over the eastern Edwards Plateau and 

suppressing the afternoon precipitation east of the Balcones Escarpment. Since the WRF model 

successfully captures the general characteristics of the precipitation over Texas, confidence is 

gained for us to investigate the specific factors that modulate the precipitation patterns based on 

the modeling results. The afternoon precipitation gradient across the plateau, escarpment, and 

plains corresponds well with the simulated upward motions. We first hypothesize that the 

upward branches of the MPS circulation enhances the afternoon precipitation, as reported in 

many previous studies [e.g., He and Zhang, 2010]. However, the spatial distribution of vertical 

velocity contradicts such a hypothesis: the upward motion does not occur in the region with the 

largest slope (i.e., western side of the Edwards Plateau) as the MPS circulation would. Instead, 

upward motion occurs in some regions with a gentle slope, e.g., east of Dallas-Ft. Worth (DFW). 

Therefore, the MPS circulation associated with the sloping terrain does not provide a good 

explanation on the main upward motion found in the model.  
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Fig. 19. Spatial distribution of (a) soil types, (b) latent heat flux (LH, in W m–2), (c) sensible heat 

flux (HFX, in W m–2), (d) soil moisture (SMOIS, in fraction) (e) wilting soil moisture content 

(WLTSMC, in fraction), and (f) moisture availability parameter (β) at 1200 CST. 
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Land surface processes are examined to search for the possible reasons for the specific 

pattern of the upward motions over the Edwards Plateau. It turns out that the spatial pattern of 

vertical velocity matches that of sensible heat flux over the Edwards Plateau (Fig. 19c), which is 

further tied to the soil type (Fig. 19a). Dominant soil types 9 (clay loam) and 12 (clay), found 

underneath the upward motion over the Edwards Plateau, lead to relatively low latent heat fluxes 

and relatively high sensible heat fluxes while the dominant soil types 1 (sand) and 3 (sandy 

loam), found underneath the downward motion east of the Balcones Escarpment, lead to 

relatively high latent heat fluxes and relatively low sensible heat fluxes. Soil moisture alone 

cannot explain the spatial distribution of latent and sensible heat fluxes. Soil moisture over soil 

types 9 (clay loam) and 12 (clay) is actually higher than soil types 1 (sand) and 3 (sandy loam) 

east of the Balcones Escarpment (Fig. 19d); however, the latent heat fluxes over clay-based soil 

types (9 and 12) are lower and sensible heat fluxes are higher.   
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Fig. 20. West-to-east cross sections of (a) vertical velocity (w, in cm s–1) and (b) rain water 
mixing ratio (QRAIN, in mg kg–1) through Dallas, Texas at 2100 UTC (1500 CST). The 
dominant soil types are shaded under the thick black line, which indicated the terrain surface. 
The clay-based soil types 9 and 12 are shaded in dark red-brown; sand-based types 1 and 3 are 
shaded in yellow. Wind vectors are overlaid on each plot. Note that vertical velocity is multiplied 
by 100 when plotting wind vectors. The longitudinal position of Dallas (–96.8˚) is marked by a 
black rectangle on the x-axis. 

 

To examine these relationships in more detail, we reviewed the hydraulic properties of 

different soil types used by the WRF model. The marked differences between clay-based soil 

types 9 and 12 and sand-based soil types 1 and 3 are with the dry-soil moisture threshold 

(DRYSMC) and wilting-point soil moisture (WLTSMC) of the soil. For any given soil type, the 

Noah land-surface model uses the same value for these two parameters. These parameters play 

an important role in dictating evapotranspiration by scaling potential evapotranspiration through 

a moisture availability parameter β [Betts et al., 1997; Chen and Dudhia, 2001]:  

𝛽 = FGFH
FIJKGFH

                                                                                    (1) 

where Θ is volumetric soil moisture content, ΘMNO is the field capacity, and ΘP is either the soil 

moisture at the wilting point (WLTSMC) for vegetation canopy evapotranspiration or the dry-

soil moisture threshold (DRYSMC) for ground surface direct evaporation. When the soil 

moisture becomes lower than DRYSMC or WLTSMC, β is set as zero and surface 

evapotranspiration is shut off. The clay-based soil types have higher values of DRYSMC and 

WLTSMC than sand-based types (Fig. 19e), by a factor of as high as 14.  Because DRYSMC 

and WLTSMC values can be high (as high as 0.138 m3 m-3) for clay-based soil types (which 

dominate over the eastern Edwards Plateau), the actual soil moisture values are more likely to 

decrease below the DRYSMC and WLTSMC of clay-based as opposed to sand-based soils, 

leading to nearly zero β (Fig. 19f) for the former soil types. Thus, one would expect lower latent 

heat fluxes (Fig. 19b) and consequently high sensible heat fluxes in regions with clay soils (Fig. 

19c).   

The simulated different behavior of surface fluxes over clay and sand is consistent with 

soil granulometry.  Sand is composed of relatively coarse particles with diameter between 2 mm 

and 50 µm while clay is composed of fine particles with diameter less than 2 µm [S Liu et al., 

2013].  Sandy soil is coarse textured, allowing water to easily circulate via capillary motion to 

reach the surface or plant roots where it can be evaporated or absorbed (and eventually released 
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from leaves) [Fast and Mccorcle, 1990; Mahfouf et al., 1987].  In contrast, in fine textured clay 

soil, the capillary motion is quite slow and it is hard for water to circulate and participate in 

evapotranspiration, thus leading to suppressed latent fluxes (consequently enhanced sensible heat 

fluxes) during the day [Fast and Mccorcle, 1991; Mahfouf et al., 1987].  The high sensible heat 

fluxes over clay-based soils (Fig. 19c) will induce upward motion that helps to trigger the 

afternoon moist convection under favorable conditions.  

The west-to-east vertical cross-sections of vertical velocity and rain water through DFW 

further corroborate the above analysis (Fig. 20). Upward motion occurs almost exactly over the 

clay-based soil types (shaded in dark red-brown) while downward motion occurs over the sand-

based soil types (shaded in bright yellow), with a solenoidal circulation being the strongest along 

the clay-sand boundaries (Fig. 20a).  Latent heat flux is more (less) likely to shut down over the 

clay- (sand-) based soil due to its high (low) values of DRYSMC and WLTSMC, consequently 

leading to high (low) sensible heat flux and upward (downward) motion. The resulting 

downward motion over the sandy soils suppresses the precipitation east of DFW while the 

upward motion over the clay soils triggers more precipitation west of the Balcones Escarpment 

(Fig. 20b). The impact of different surface energy balance (or partition between sensible and 

latent heat fluxes) on precipitation shown in this study is also corroborated by large eddy 

simulations conducted by Kang [2016], in which a higher Bowen ratio (i.e., more sensible heat 

flux relative to latent flux) is shown to more likely trigger afternoon moist convection. This study 

is also consistent with previous observational studies [e.g., Taylor et al., 2012] that show more 

afternoon rainfall over areas with enhanced sensible heat flux.  

Due to the companion presence of upward and downward motions, local circulations 

(named as soil-type circulation) are developed over some regions, e.g., east of DFW. A similar 

local circulation due to a comparable spatial pattern of vertical velocities along the Balcones 

Escarpment was previously reported in a case study on 7 August 2011 where the local 

circulations were, however, attributed to the MPS circulation as a result of the terrain height 

difference [Hu and Xue, 2016]. Yet, the gentle terrain slope east of DFW (Fig. 20) disproves the 

MPS circulation hypothesis but corroborates the soil-type circulation idea.  
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7. analysis and findings 
• With the optimized configuration, WRF model downscaling is carried out from NCEP/DOE 

R2 forcing for a 36-year period (1980-2015) over the CONUS domain. 
• The downscaling obtained from this study captures well the spatial/temporal variation of 

monthly climatology precipitation  
• Different cumulus schemes lead to more pronounced difference in simulated precipitation 

than other tested physics schemes at a 20 km grid spacing 
• Spectral nudging is important for correctly downscaling precipitation over the Great Plains.  
• High dry-soil moisture threshold and wilting-point soil moisture trigger more afternoon moist 

convection over the Edwards Plateau in August 
• We obtained a better understanding of the band of afternoon, near-surface wind maxima 

along the Balcones Escarpment 
• The soil-type circulation is clearly demonstrated for the first time in three-dimensional 

downscaling simulations 
 

8. conclusions and recommendations 
Accurate precipitation downscaling in the Great Plains remains a great challenge for most 

RCMs, particularly during the warm months [Liang et al., 2006; F X Qiao and Liang, 2015; J L 

Wang and Kotamarthi, 2014].  Most previous dynamic downscaling simulations [e.g., Mearns et 

al., 2012; X Sun et al., 2016] significantly underestimate warm-season precipitation in the region.  

To improve the results, we conduct in this study WRF simulations with different physics 

parameterization schemes and nudging strategies, first for a representative warm season, in order 

to identify an optimal configuration or find a plausible solution to the precipitation bias problem.  

Results show that different cumulus schemes lead to more pronounced difference in simulated 

precipitation than other tested physics schemes.  Simply altering physics schemes (including 

cumulus schemes, land surface models, PBL schemes, and microphysics schemes) is not enough 

to alleviate the dry bias over the southern Great Plains, which appears to be related to an 

anticyclonic circulation anomaly that develop in the long-term simulations over the central and 

western parts of the continental U.S.  The northerly wind anomaly along the eastern flank of this 

circulation anomaly decreases the prevailing southerly flows over the Great Plains along the 

western side of the Bermuda High, advecting less moisture from the Gulf of Mexico to the Great 

Plains.  Thus, the anticyclonic circulation anomaly that develops in the continuous, long-term 

WRF simulation decreases moisture supply to the southern Great Plains and thereby suppresses 

its associated precipitation.   

Interior spectral nudging emerges as an effective solution to reduce the precipitation bias 

over the Great Plains in the WRF dynamic downscaling.  Spectral nudging ensures that the 
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synoptic-scale circulations follow those in the driving fields while simultaneously allowing the 

RCM (i.e., WRF in this study) to develop small-scale dynamics, which is consistent with the 

objective of dynamic downscaling, i.e., to produce additional small-scale details under coarse-

resolution forcing.  Applying spectral nudging effectively suppresses the circulation anomaly in 

WRF downscaling.  As a result, the dry bias over the Great Plains is effectively alleviated and 

the downscaling performance in reproducing observed precipitation is significantly improved.  

With the optimized WRF model configuration, downscaling is carried out from 

NCEP/DOE R2 forcing using WRF for a 36-year period (1980-2015) and compared to 

corresponding results without spectral nudging.  The spatial and temporal distributions of 

monthly climatological precipitation patterns are captured well in the simulation with spectral 

nudging.  Yearly variation of precipitation amount over the Great Plains is also captured with a 

correlation of 0.743 with the PRISM precipitation data and, overall, the precipitation amount is 

only over-produced by 0.055 mm day-1 (2.4%).  Compared to the downscaling results of 

NARCCAP WRFG and those reported in Sun et al., 2016), our precipitation downscaling 

represents a substantial improvement.  Even though the testing of the configuration is done for 

the warm season only, improvements over NARCCAP WRFG are seen throughout the whole 

year. 

The precipitation downscaling can greatly affect down-stream impact models. We studied 

the impact of precipitation downscaling on the trans-state (Oklahoma and Kansas) Oologah Lake 

watershed of the Great Plains using the VIC model.  Because NARCCAP WRFG significantly 

underestimates precipitation over the Great Plains, especially for Oklahoma and Kansas, the VIC 

simulations driven by its output consequently significantly underestimate the streamflow at the 

watershed outlet during most of the year, as reported previously by L Qiao et al. [2014b]. With 

the improved downscaled precipitation from this study, the simulated monthly streamflow rates 

show a much better agreement with observations.   

We note that the WRF downscaling conducted in this study is at a spatial resolution of 20 

km, which is larger than the sizes of individual convective storms that frequently occur in the 

Great Plains.  Thus, this method may not be able to accurately simulate convective weather due 

to its inability to simulate small-scale extreme events [Y Gao et al., 2012; Gensini and Mote, 

2014; Mahoney et al., 2013; Andreas F. Prein et al., 2017; X Sun et al., 2016; C X Zhang et al., 

2012].  Because of the paramount social and economic impacts these events can cause, higher-

resolution dynamical climate downscaling with the ability to capture these small-scale extreme 
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events is warranted to provide the information needed for key local decision-making at relevant 

(county-level or smaller) scales, particularly for the Great Plains [Harding and Snyder, 2014].  

Lessons learned from this study may help produce such meaningful higher-resolution dynamic 

downscaling in the future.  When spectral nudging is applied to convection-allowing simulations, 

as those reported in Sun et al. (2016), further improvements in reproducing features associated 

with severe weather are expected.  

While spectral nudging can alleviate the model bias in an artificial way, the root cause for 

the model error (i.e., summertime dry bias) over the Great Plains is not revealed clearly with the 

simulations conducted in this study with different physics schemes.  Though not shown here, 

other sensitivity simulations are also conducted, including changing land properties, different 

terrain height, different horizontal resolution, and different domain size.  The spurious 

circulation appears initiated west of Mexico (which subsequently leads to a northerly wind 

anomaly over the Great Plains) and the spurious circulation is related to temperature bias at 

certain levels, e.g., ~850 hPa, and 500-650 hPa.  However, the cause-and-effect relationship 

between the temperature biases and the spurious circulation yet remains to be revealed in future 

studies.   

Cumulus schemes appear to be the most critical model component to affect precipitation 

simulations over the Great Plains with a 20 km grid spacing.  The scale–aware cumulus schemes 

(particularly multi-scale KF) show better performance than their non-scale-aware counterparts in 

terms of precipitation amount and timing/propagation.  Because of the continuous advancement 

of computation resources, climate and operational NWP simulations are now advancing from 

convection-parameterization resolution to convection-permitting resolution, in rare cases to 

convection-resolving resolution that requires sub-kilometer grid spacing [Kwon and Hong, 

2017].  Even though in some convection-permitting simulations (e.g., at 4 km resolution), 

cumulus schemes are turned off, scale-aware cumulus schemes appear more appropriate in the 

gray zone (1-15km), which can bring the convection-parameterization simulations seamlessly 

converge to convection-resolving simulations as the horizontal grid size is reduced.  Also the 

advantages of scale-aware cumulus schemes over non-scale-aware schemes can be more 

appreciable in the gray zone.  Until cloud-resolving simulations become widely affordable, 

which may take years, further development/refinement/evaluation of scale-aware cumulus 

schemes (such as Grell-Freitas and multi-scale KF) to improve simulations at the gray-zone 

resolution (1-15km) is warranted [A. Arakawa and Jung, 2011; Akio Arakawa et al., 2016; 
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Gerard et al., 2009; S-Y Hong and Dudhia, 2012; Kwon and Hong, 2017; Leung and Gao, 2016]. 

Based on our analysis of high resolution (4km) WRF downscaling outputs and 14-year 

(i.e., 2002-2015) Stage IV precipitation data, the role of the Edwards Plateau in modulating 

August precipitation distribution is investigated. In this month, the total precipitation east of the 

Balcones Escarpment is suppressed. The precipitation over the eastern part of the Edwards 

Plateau appears separated from the other precipitation area in the east, south, and west. Locally 

initiated moist convection in the afternoon contributes most to the total precipitation during this 

month in the region. The dynamically downscaled simulations nicely capture the spatial patterns 

of both afternoon precipitation frequency and amount, matching the simulated upward motions. 

The upward motion does not occur in the region with the largest slope (i.e., western side of the 

Edwards Plateau); instead, it occurs in some regions with a gentle slope, e.g., east of DFW. Thus, 

the Mountain-Plains Solenoid (MPS) circulation (which is supposed to be most prominent at 

places with the largest horizontal elevation differences) cannot explain the dominant vertical 

motions.  

Land surface processes are examined to search for possible explanation for the specific 

pattern of upward motions over the Edwards Plateau. In fact, the spatial pattern of vertical 

velocity matches that of surface sensible heat fluxes quite well, which is found to be primarily 

tied to the soil type. The clay-based soil types dominant over the Edwards Plateau have a 

relatively higher dry-soil moisture threshold and wilting-point soil moisture than their sandy 

counterparts dominant over the plain to the east. Thus, clay-based soils can retain more of their 

soil moisture, reducing evapotranspiration and limiting latent heat fluxes, consequently leading 

to higher sensible heat fluxes. As a result of high sensible heat flux, vertical motion is induced, 

helping to trigger afternoon moist convection over the Edwards Plateau under favorable 

conditions. 

9. outreach 
Two articles were published out of the work of this project:  

Hu, X.-M., M. Xue, R. A. McPherson, E. Martin, D. H. Rosendahl, and L. Qiao 
(2018), Precipitation dynamical downscaling over the Great Plains, J. Adv. Modeling Earth 
Systems,10.1002/2017MS001154  

Hu, X.-M., M. Xue, and R. A. McPherson (2017), The Importance of Soil-Type Contrast in 
Modulating August Precipitation Distribution near the Edwards Plateau and Balcones 
Escarpment in Texas, J. Geophys. Res., doi:10.1002/2017JD027035  
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The produced precipitation downscaling data and some other meteorological data were passed to 

Lei Qiao (Oklahoma State University) for hydrological assessment using the VIC model.  

New proposals to extend beyond this project were submitted to seek further funding for CAPS’s 

dynamic downscaling work. 
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