区域尺度温室气体模拟与反演

Xiao-Ming Hu (xhu@ou.edu)

https://caps.ou.edu/xhu/

Center for Analysis and Prediction of Storms

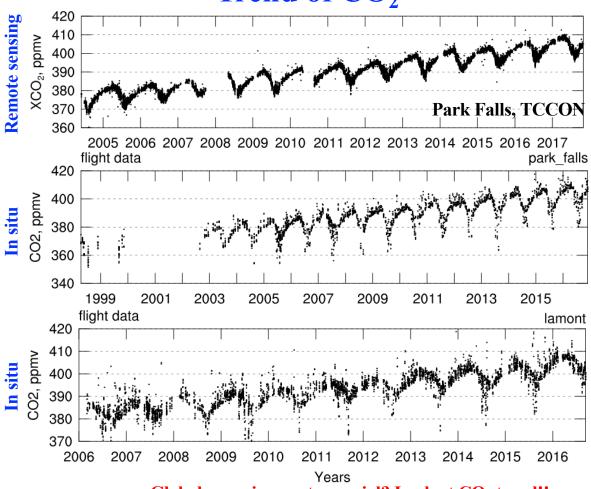
University of Oklahoma

2023年11月@长沙

1. 3D WRF-CO₂ simulation

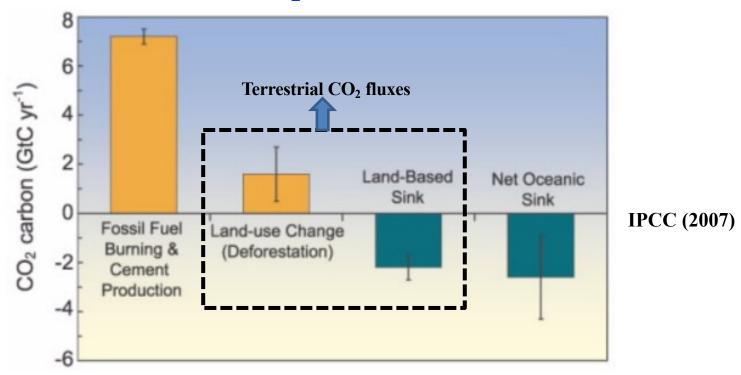
Over US and China

- 2. Multi-Model investigation of Haze Pollution
- 3. WRF-GHG for both CO₂ and CH₄ simulation
- 4. CH4 inversion



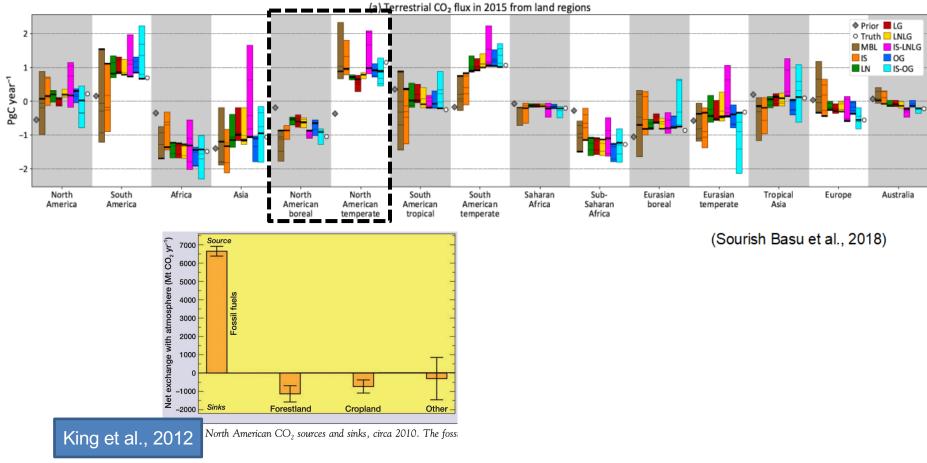
Global warming controversial? Look at CO₂ trend!!

Global CO₂ sources and sinks



Uncertainties of terrestrial CO₂ fluxes are large

Terrestrial CO₂ fluxes in different regions



Uncertainties in each region/plant function are large too

Weather-biosphere online-coupled WRF-VPRM

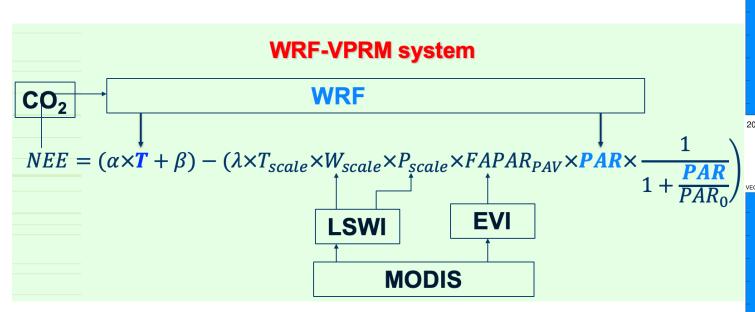
EVI 2016-07-25 18:00:00

100°W

Evergreen.Deciduous.Mixed forest,Shrubland,Savanna,Cropland,Grasslan

80°W

Vegetation Photosynthesis and Respiration Model (VPRM) (Xiao et al., 2004;
 Mahadevan et al., 2008; Ahmadov et al., 2007)



 α , β , λ , PAR_0 need flux data calibration

More details in Hu et al., 2020, JAMES

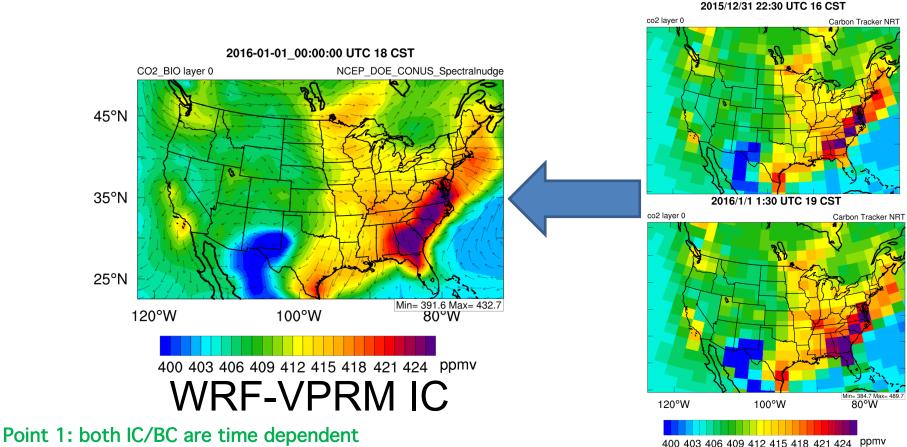
Implemented parameters from Hilton et al. (2013)

Calibrated using eddy covariance tower data over North America

	Evergreen forest	Deciduous forest	Mixed forest	Shrub	Savanna	Crop	Grass
PAR_0	745.306	514.13	419.5	590.7	600	1074.9	717.1
λ	0.13	0.1	0.1	0.18	0.18	0.085	0.115
α	0.1247	0.092	0.2	0.0634	0.2	0.13	0.0515
β	0.2496	0.843	0.27248	0.2684	0.3376	0.542	-0.0986

And other minor changes to VPRM in WRF

Downscaling in 2016 from CarbonTracker

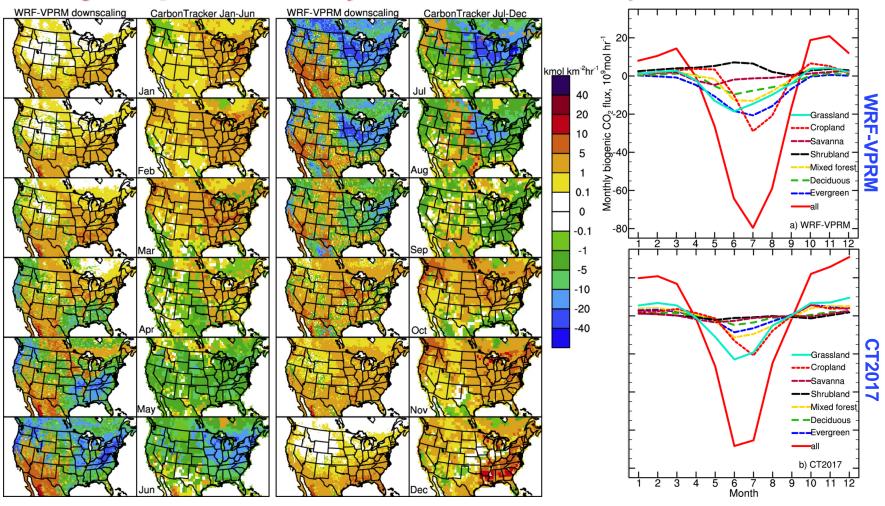


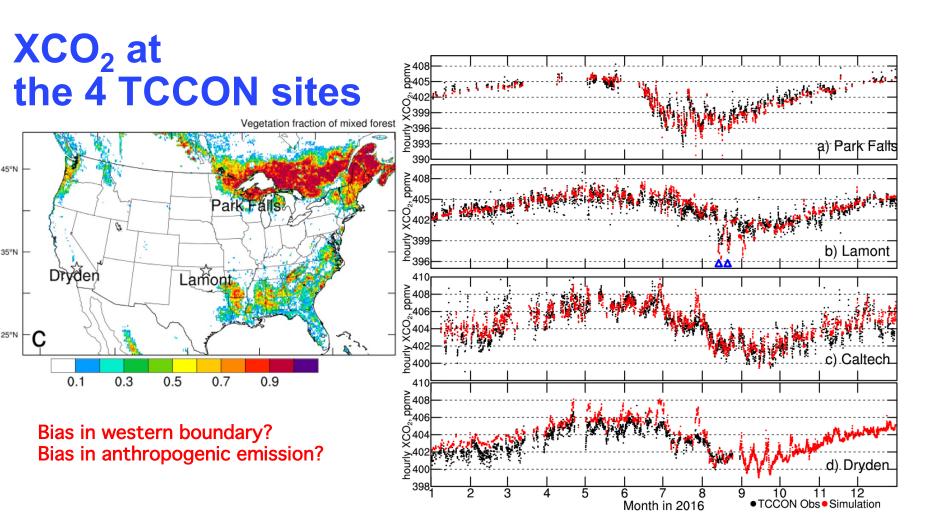
Point 2: resolution of WRF-VPRM is much higher, adequate to investigate impact of weather

configuration for WRF-VPRM downscaling

Short wave radiation	Dudhia			
Long wave radiation	rapid radiative transfer model (RRTM)			
Boundary layer	YSU			
Microphysics	Morrison			
Cumulus	Grell-Freitas			
Land surface model	NOAH			
Vertical levels	47			
Horizontal resolution	12 km \times 12 km with 266 \times 443 grid points			
Time step	60 seconds			
Meteo initial and lateral boundary conditions	NCEP/DOE Reanalysis 2 (R2)			
CO ₂ initial and lateral boundary conditions	CarbonTracker global simulation 3°×2° outputs			
Interior nudging	Spectral nudging			
nudging variables	horizontal wind components, temperature, geopotential			
nudging coefficient	3×10 ⁻⁵ s ⁻¹			
nudging height	above PBL			
wave number	5 and 3 in the zonal and meridional directions respectively			
nudging period	throughout the downscaling simulation			

Biogenic CO₂ fluxes downscaled by WRF-VPRM vs. CarbonTracker posterior fluxes

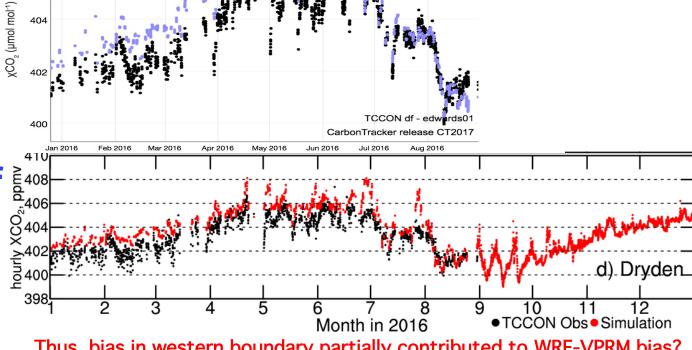




captures the seasonal and some episodic variation of XCO₂.

Evaluation of CT2017

Evaluation of Made 408 WRF-VPRM Sylvador 400 WRF-VPRM Sylvador 400

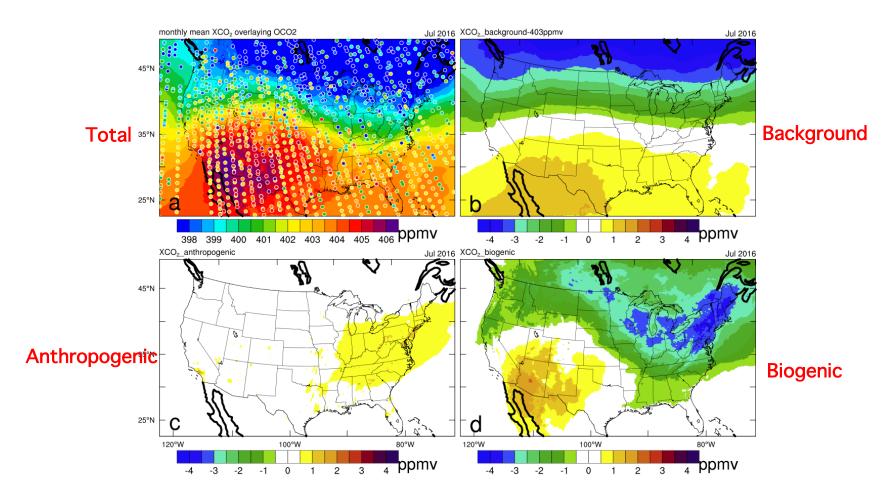


- Retrieved - Simulated

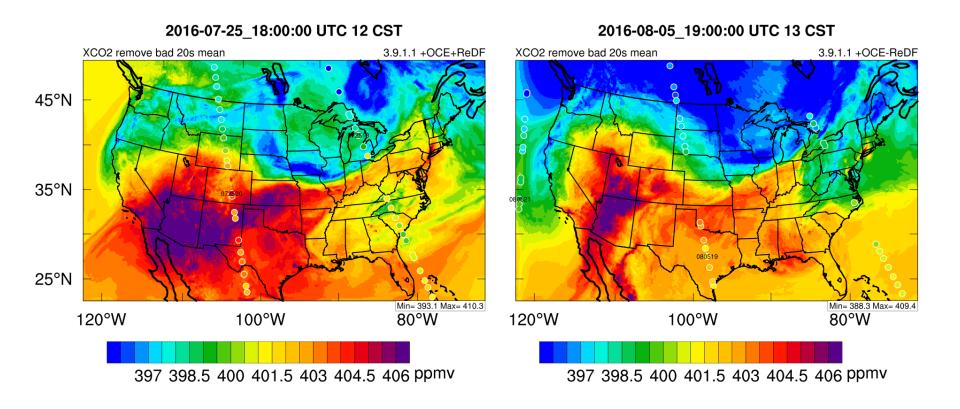
(a) Retrieved and simulated xCO

Thus, bias in western boundary partially contributed to WRF-VPRM bias?

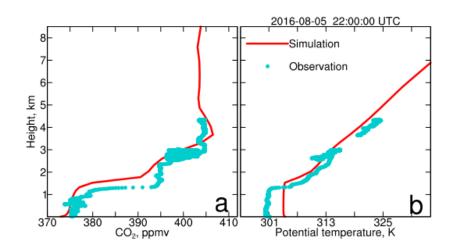
Compare with OCO-2; individual contributions

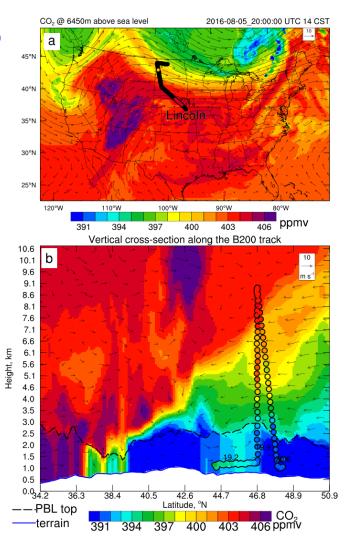


Compare with OCO-2, individual cases



Case study, Aug 5 OCO-2 underpass

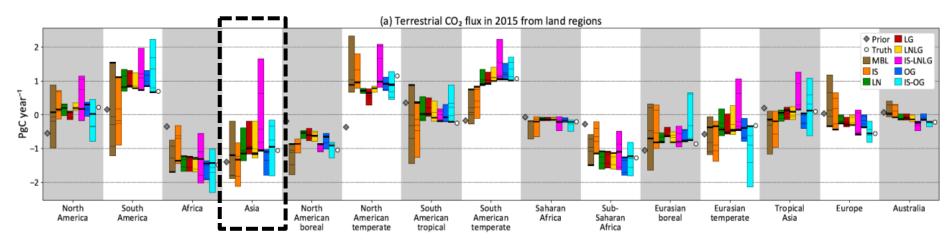




Summary

- 1. Calibrated VPRM parameters from Hilton et al [2013] are implemented into WRF-VPRM
- WRF-VPRM reasonably captures monthly variation of XCO₂ and episodic variations due to frontal passages
- 3. The downscaling also successfully captures the horizontal CO₂ gradients across fronts, as well as vertical CO₂ contrast across the boundary layer top.

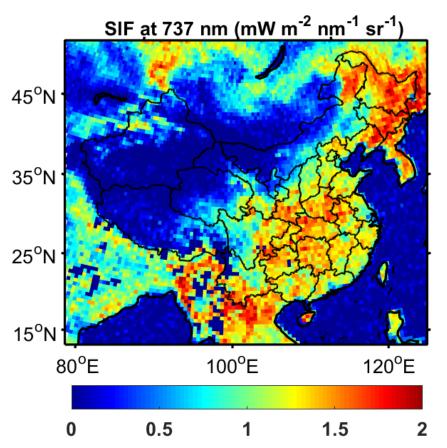
Terrestrial CO₂ fluxes in different regions

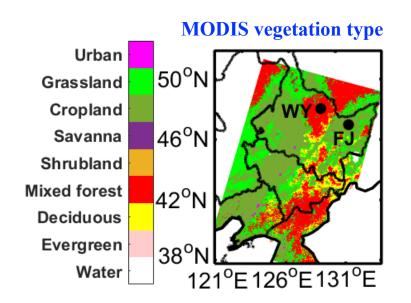


(Sourish Basu et al., 2018)

Uncertainties in each region are large too Asia is CO₂ sink!!

Northeast China: a major CO₂ sink

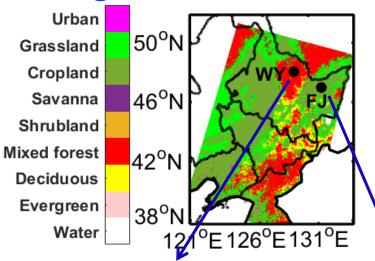




Mixed forest and cropland dominate in Northeast China Crop area is still increasing!!

SIF: Sun-induced Fluorescence, proportional to photosynthesis

Long-term tower measurements, focusing on 2016



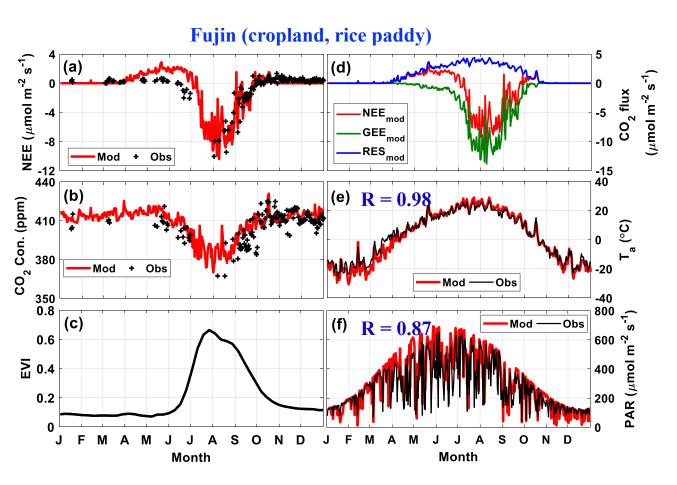
- Observational parameters:
 - 1) Hourly mean CO₂ fluxes and concentrations,
 - 2) wind speed and direction, air temperature
 - 3) PAR (only at Fujin)
- Observational period:

Fujin: since 2012 Wuying: since 2014

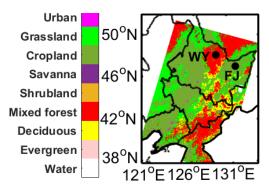
Wuying, mixed forest site (131.9385° E, 47.1519° N, 345 m)

Fujin, rice paddy field (129.2661° E, 48.2991° N, 59 m)

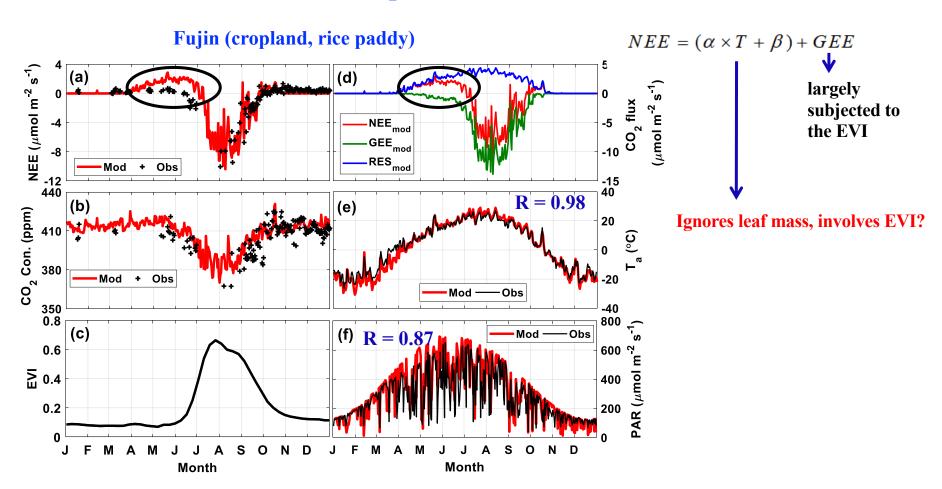
Seasonal variations of CO₂ fluxes and concentrations



MODIS vegetation type

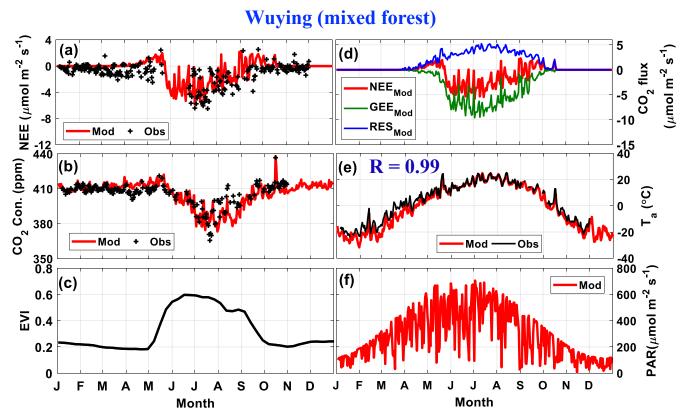


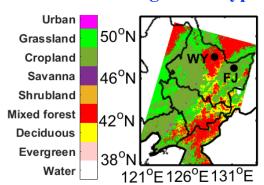
Bias of terrestrial respiration



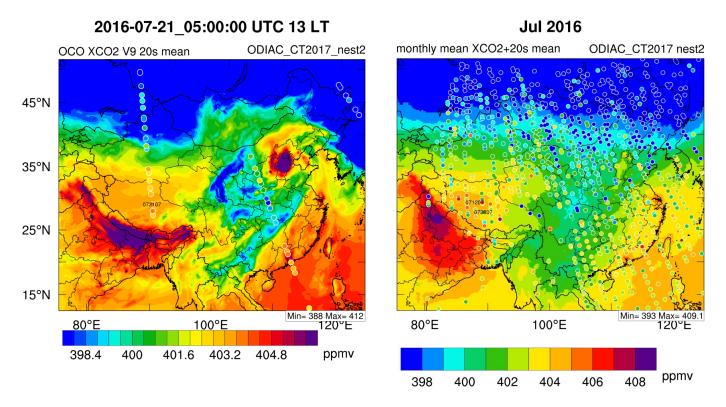
Seasonal variation of CO₂ fluxes and concentrations

MODIS vegetation type



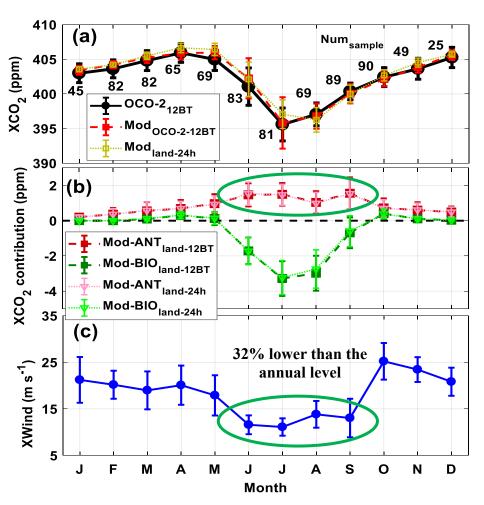


OCO-2 retrieved XCO₂ (L2 Lite Version 9)



Advantage: spatiotemporal coverage Disadvantage: interfere with cloud and haze pollution!!

Seasonal variation of XCO₂ over Northeast China



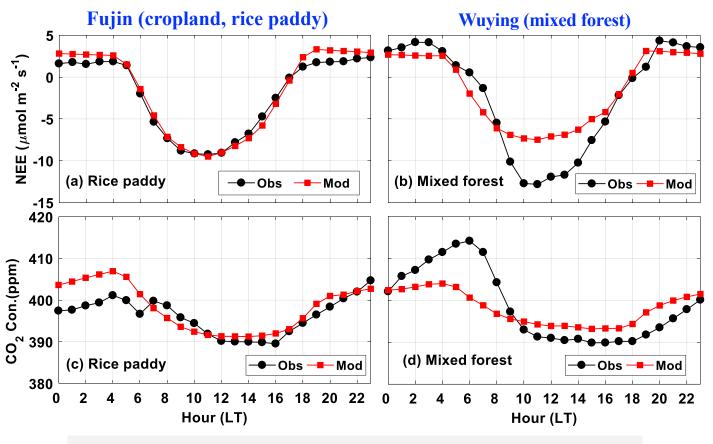
Seasonal variation range: 10 ppmv

Annual mean contribution:

- anthropogenic: 0.84 ppmv
- biogenic: -0.60 ppmv

Weak winds favors the large anthropogenic contribution of XCO₂ in summer

Mean diurnal variation of CO₂ fluxes and concentrations in growing season



WRF-VPRM underestimates diurnal variation range over mixed forest

Conclusions and future work

- Mixed forest is observed as a stronger CO₂ sink/source than rice paddy on average in 2016;
- Negative biogenic contribution offset about 70% of anthropogenic contribution of XCO₂ over Northeast China in 2016;
- The uncertainty of NEE simulation largely depends on four VPRM parameters, especially the maximum light use efficiency λ .

Further improvement of WRF-VPRM Updated CO₂ flux parameterization

$$ER = \alpha \times T + \beta$$

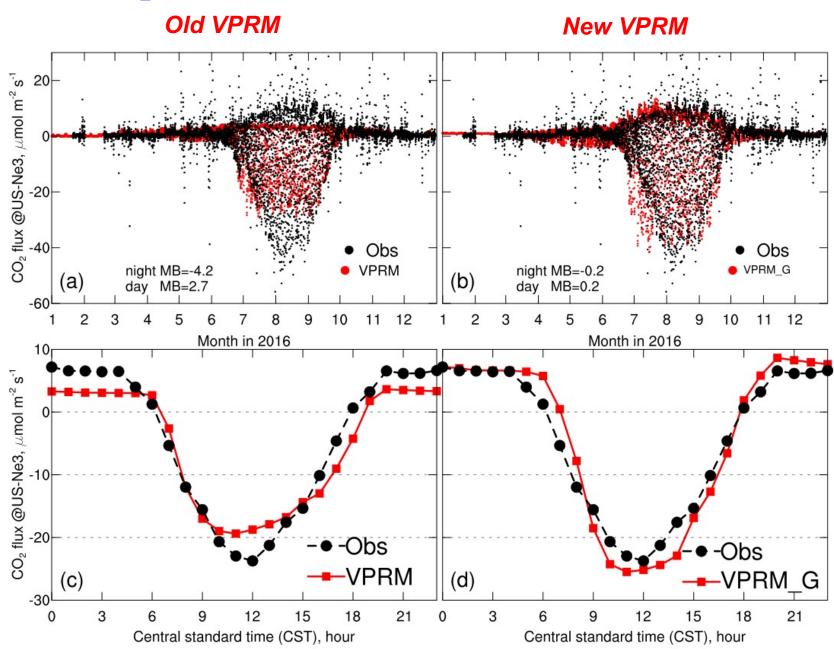
(Gourdji et al., 2020):

$$ER = \beta + \alpha_1 \cdot T + \alpha_2 \cdot T^2 + \gamma \cdot EVI + k_1 \cdot W_{scale} + k_2 \cdot W_{scale} \cdot T + k_3 \cdot W_{scale} \cdot T^2$$

incorporating EVI, water stress scaling factor (W_{scale}), and a quadratic dependence on Tair

More details in Hu et al., 2021, JGR

CO₂ flux evaluation

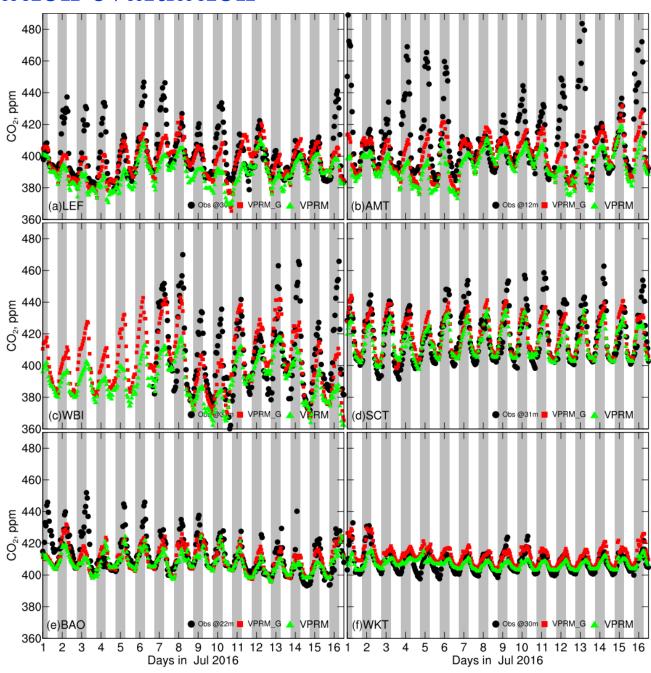


25°N (a) 0.1 0.5 0.7 0.3 Dominant vegetation type 25°N (b)

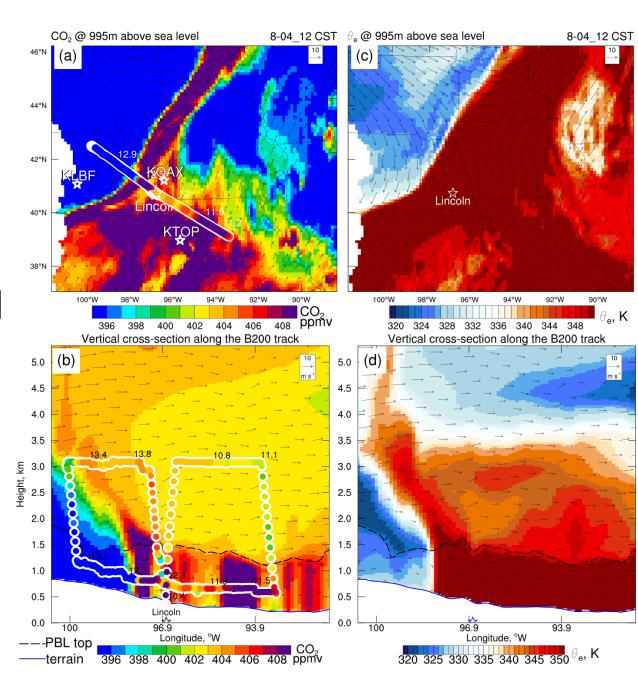
EVI @2016-08-04

Evaluation data: NOAA towers

CO₂ concentration evaluation



Using new VPRM to examine CO₂ band



Application of improved WRF-VPRM in China to examine CO₂ flux

Magu

Yakou

Altitude (m)

3423

4148

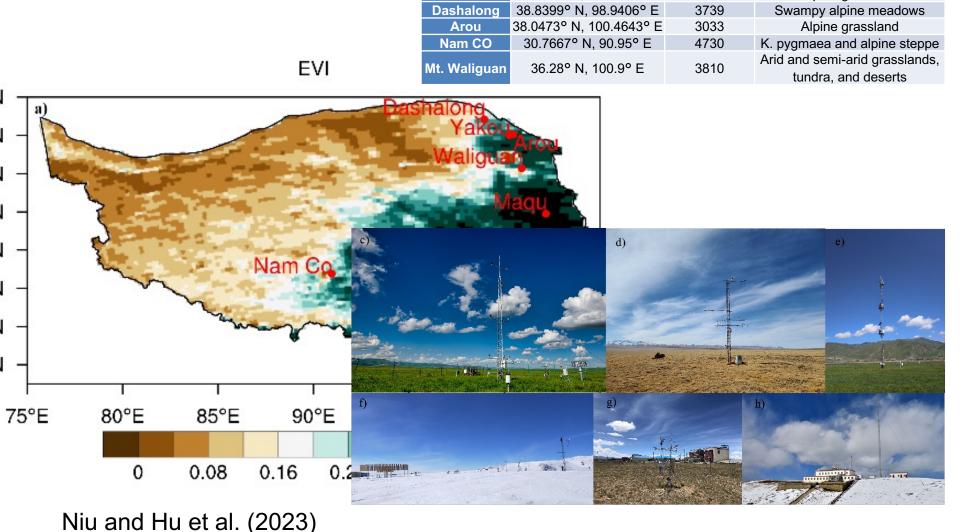
33.8975° N, 102.1619° E

38.0142° N, 100.2421° E

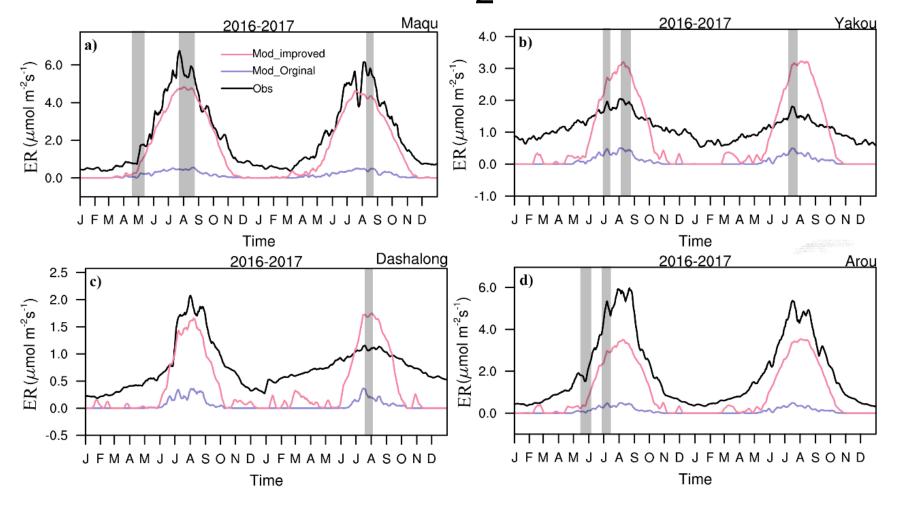
Substrate

Kobresia tibetica and K. humilis

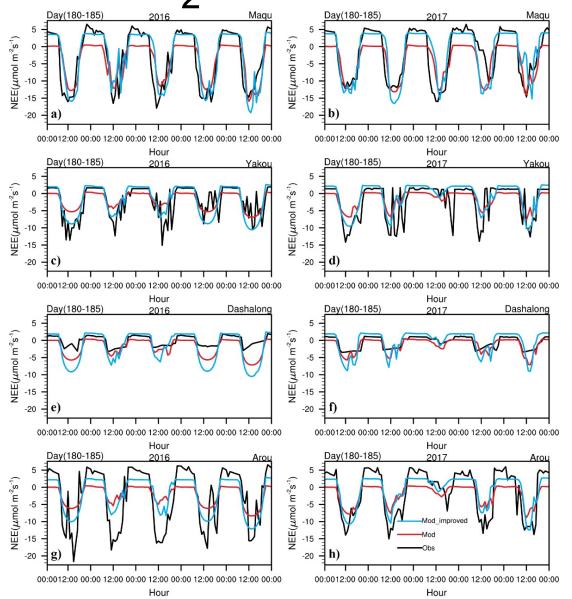
Alpine grassland



Application of improved WRF-VPRM in China to examine CO₂ flux



Application of improved WRF-VPRM in China to examine CO₂ flux



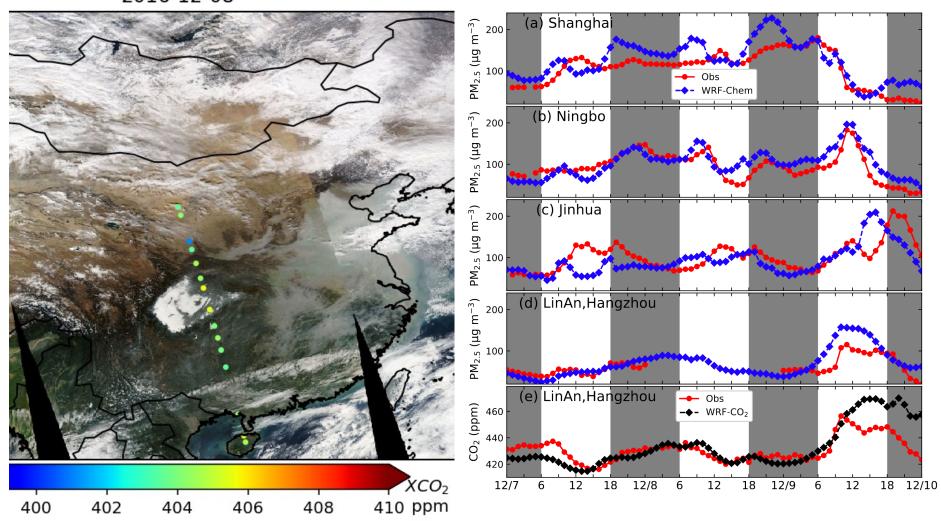
1. 3D WRF-CO2 simulation

Over US and China

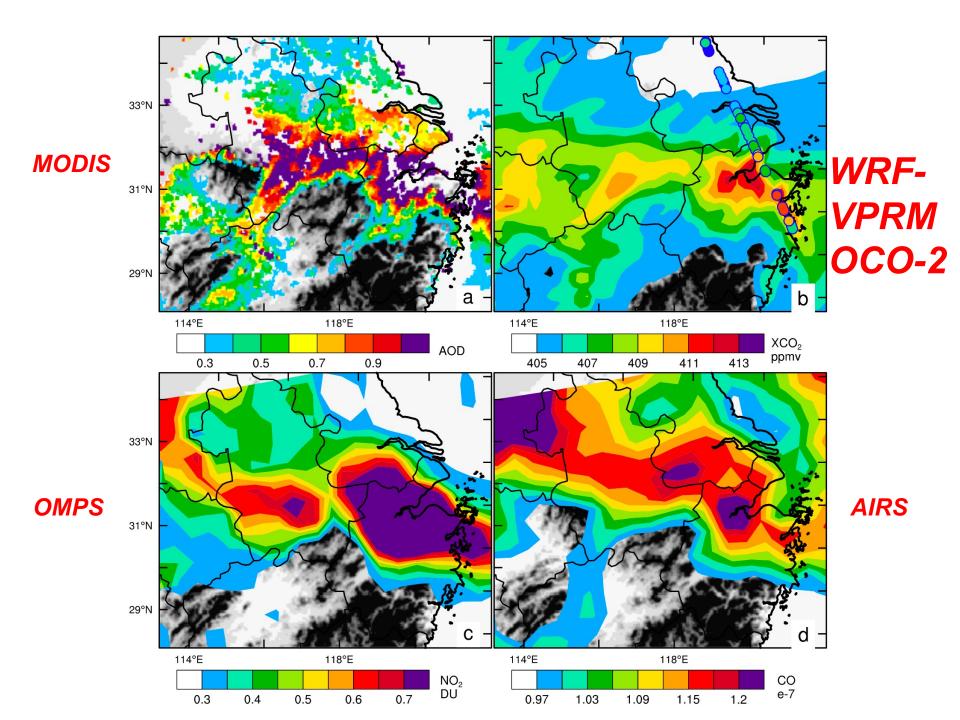
- 2. Multi-Model investigation of Haze Pollution
- 3. WRF-GHG for both CO₂ and CH₄ simulation
- 4. CH4 inversion

Haze pollution in China

2016-12-08



Heaviest haze pollution in China in 2016



Conclusions

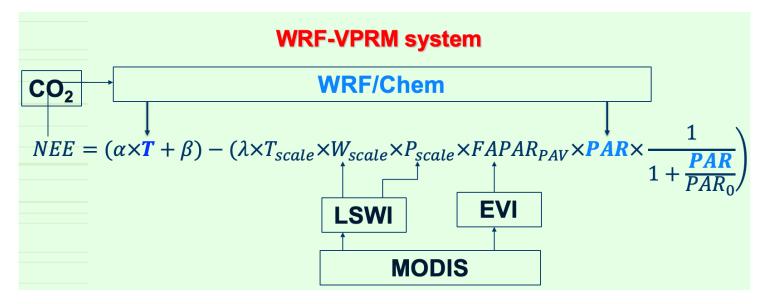
- 1. A severe haze pollution at the leading edge of a cold front in China on Dec. 9, 2016 is examined using multi-sensors and multi-models, including WRF-Chem and WRF-CO₂.
- 2. Satellite-retrieved column-averaged CO₂ data can be used to monitor air pollution events collectively with other in situ and remotesensing instruments.
- 3. Channel winds between Mountains Dabie and Huang transport pollutants from the North China Plain and Yangtze River Delta Region to Jiangxi Province

1. 3D WRF-CO2 simulation

Over US and China

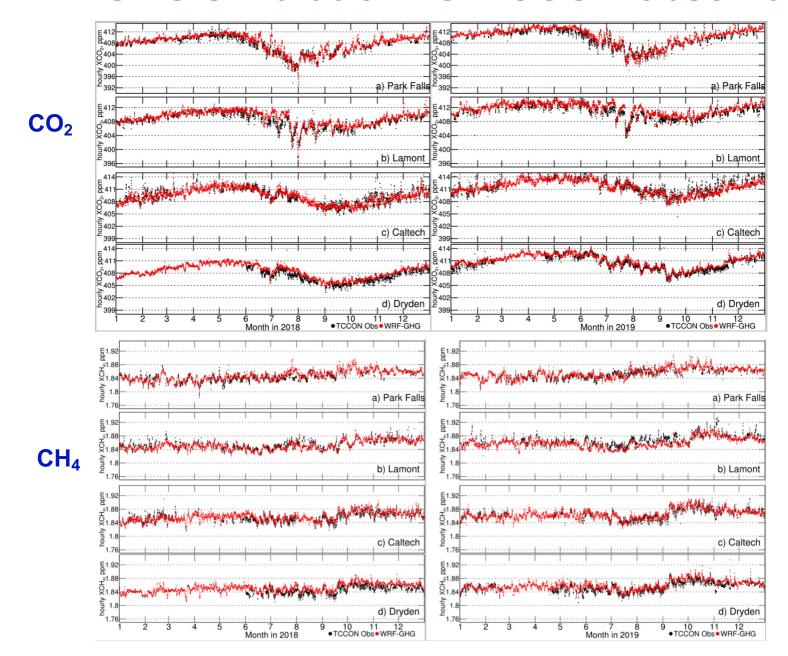
- 2. Multi-Model investigation of Haze Pollution
- 3. WRF-GHG for both CO₂ and CH₄ simulation
- 4. CH4 inversion

WRF-GHG coupled with **CAMS**

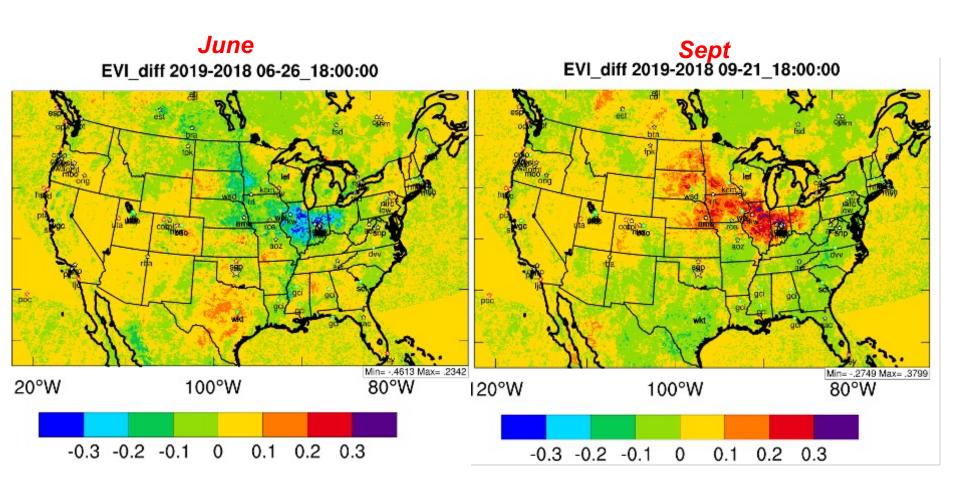


Included CH₄ recently doi/10.1002/essoar.10508159.1 the *WetCHARTs* wetland CH₄ emissions EPA NEI2017 anthropogenic CH₄ emissions

WRF-GHG simulation vs. TCCON observation

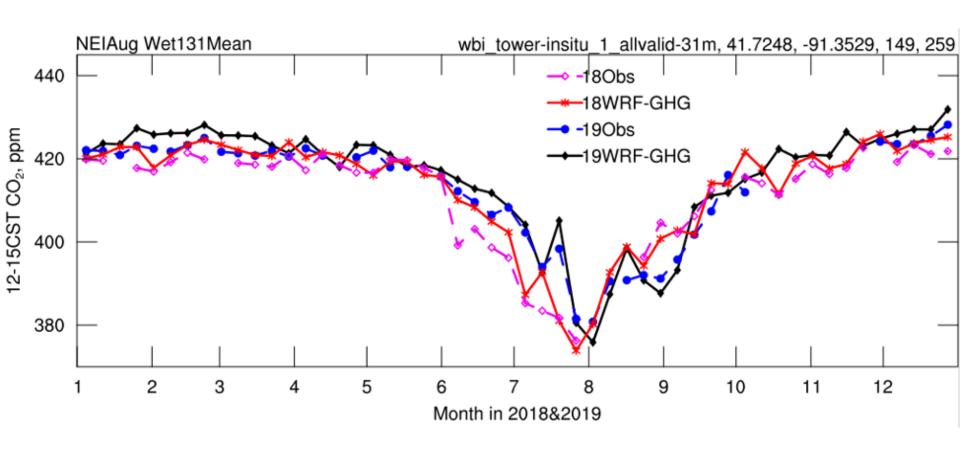


Difference of EVI between 2018 and 2019



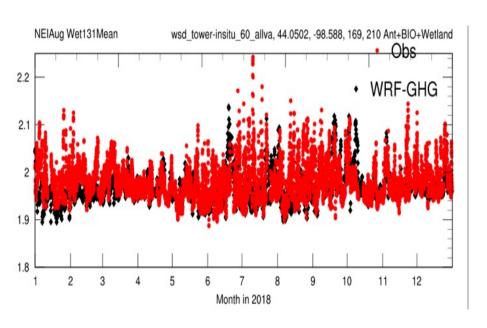
Flood delayed growing season

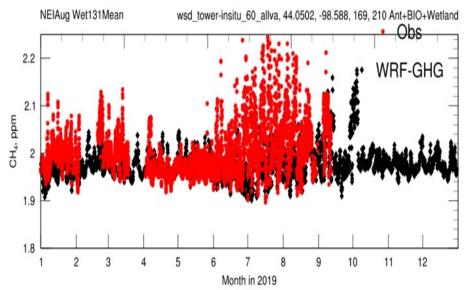
2019 flood delayed the drawdown of CO₂ in summer





CH₄ bias against Obspack due to precipitation bias?





Waiting for PRISM-driven WetCharts CH₄ emission

Summary

- 1. WRF-GHG is further developed to simulate CO₂ and CH₄.
- 2. The 2019 May flood delayed growing season in mid-west and the typical spring and summer drawdown of atmospheric CO₂ by 1-3 weeks
- 3. Obspack and TROPOMI data indicate higher CH₄ in the midwest in July and August, in 2019 relative to 2018, due to the abnormal precipitation in 2019 in the region that induces more wetland CH₄ emissions.

1. 3D WRF-CO2 simulation

Over US and China

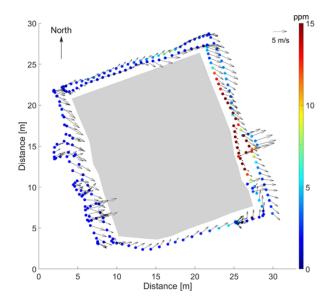
- 2. Multi-Model investigation of Haze Pollution
- 3. WRF-GHG for both CO2 and CH4 simulation
- 4. CH4 inversion

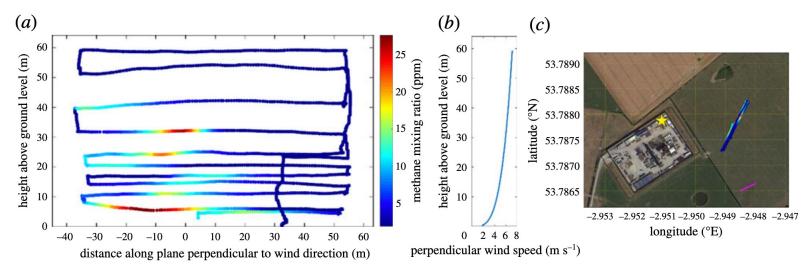
Table 1, Summary of advantages and disadvantages of different top-down flux quantification techniques

flux quantification techniques		Advantages	disadvantages
Conventional simple methods	Mass balance box methods	Simply quantify the emissions using the total flux out of the box covering the emission sources	
	Gaussian plume inversion	Gaussian plume equation	Assume Gaussian distributed plume, which is often not valid in conditions with variable winds and large-scale turbulence
More advanced methods using three-dimensional simulations	inversion (also referred to as scaling factor method)	emission-concentration relationship calculated by the dispersion model, good	Only scale the pre-assumed emissions without changing the spatial distribution, cannot attribute to different emission locations
More advanced methods through data assimilation	approach	4D-Var is computationally efficient due to no requirement of ensemble forecast 4D-Var performs well over data sparse regions	
	Ensemble Kalman Filter (EnKF)	Quantify emission using flow-dependent error covariance between emissions and concentrations derived from short-term ensemble forecasts Meteorological fields can be simultaneously optimized, which leads to better emission estimation	

Mass balance methods

$$F = \int_{z_1}^{z_2} \int_{x_1}^{x_2} ([CH_4] - [CH_4]_b) U_{\perp} dx dz,$$





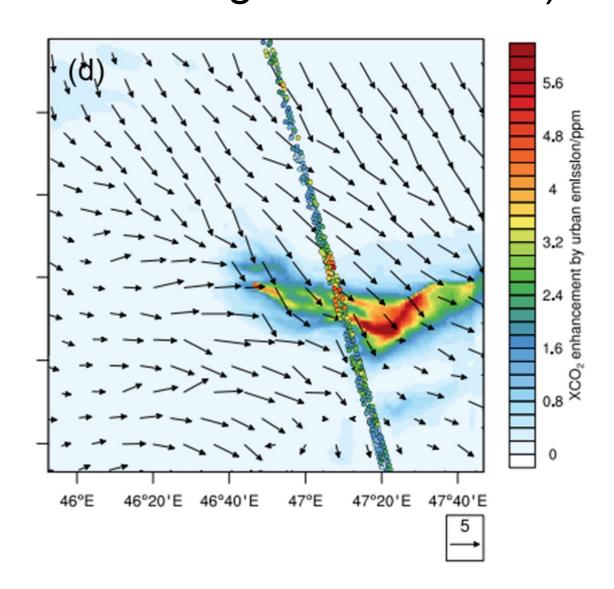
Gaussian plume inversion

$$[CH_4](y,z) = \left(\frac{F}{2\pi U_{\perp}\sigma_y\sigma_z} \times \exp\left(\frac{-y^2}{2\sigma_y^2}\right) \times \left(\exp\left(\frac{-(z-H)^2}{2\sigma_z^2}\right) + \exp\left(\frac{-(z+H)^2}{2\sigma_z^2}\right)\right)\right) + [CH_4]_{b}$$

More advance methods using 3D dispersion models and data assimilation

flux quantification techniques		Advantages	disadvantages
Conventional simple methods	Mass balance box methods	Simply quantify the emissions using the total flux out of the box covering the emission sources	
	Gaussian plume inversion	Simply quantify the emissions using the Gaussian plume equation	Assume Gaussian distributed plume, which is often not valid in conditions with variable winds and large-scale turbulence
More advanced methods using three-dimensional simulations		semission-concentration relationship	eOnly scale the pre-assumed emissions without changing the spatial distribution, dcannot attribute to different emission locations
	approach	4D-Var is computationally efficient due to no requirement of ensemble forecast 4D-Var performs well over data sparse regions	
		Quantify emission using flow-dependent error covariance between emissions and concentrations derived from short-term ensemble forecasts Meteorological fields can be simultaneously optimized, which leads to better emission estimation	

Particle dispersion model inversion (also referred to as scaling factor method)



Data assimilation, 4Dvar vs. EnKF

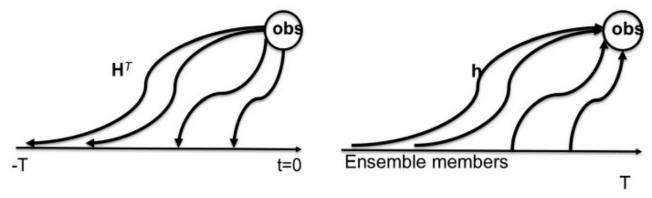
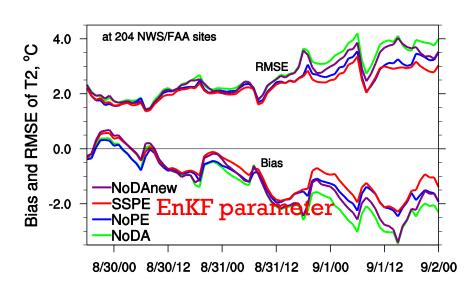
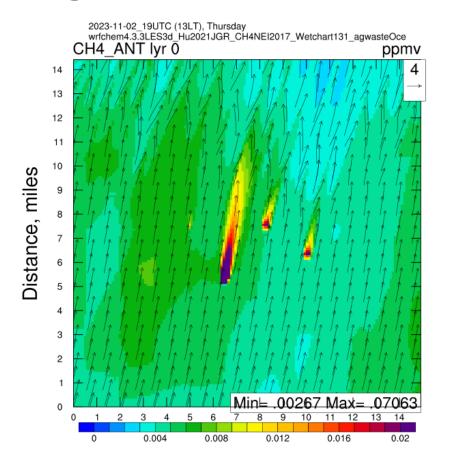


Figure 1. Schematic plot showing the differences between (left) 4D-Var and (right) ensemble Kalman filter in calculating the relationship between CO_2 concentrations and surface fluxes. H^T is the adjoint of the observation operator including the adjoint of transport model, while $h(\cdot)$ represent the forward observation operator including forward transport model.

Hu et al. 2011, GRL



CH4 flux inversion using EnKF-WRF/GHG



49,248*9 g/day at enlink site and 12,096*9 g/day at devon and El reno site

References

- 1. Hu, X.-M., Gourdji, S. M., Davis, K. J., Wang, Q., Zhang, Y., Xue, M., . . . Crowell, S. M. R. (2021). Implementation of improved parameterization of terrestrial flux in WRF-VPRM improves the simulation of nighttime CO2 peaks and a daytime CO2 band ahead of a cold front. JGR: Atmospheres, e2020JD034362. 10.1029/2020JD034362.
- 2. Hu, X.-M., S. Crowell, et al. (2020), <u>Dynamical Downscaling of CO₂ in 2016 over the contiguous United States using WRF-VPRM, a weather-biosphere-online-coupled model</u>, *J. Adv. Modeling Earth Systems*, <u>10.1029/2019MS001875</u>.
- 3. Li, X., **Hu, X.-M.**, Cai, C. et al. (2020), <u>Terrestrial CO₂ Fluxes, Concentrations, Sources and Budget in Northeast China: Observational and Modeling Studies</u>, *J. Geophys. Res.-Atmospheres*, <u>10.1029/2019JD031686</u>.
- **4. Hu, X.-M.**, J. Hu, L. Gao, C. Cai, Y. Jiang, M. Xue, T. Zhao, and S. M. R. Crowell, 2020: Multi-sensor and multi-model monitoring and investigation of a wintertime air pollution event ahead of a cold front over eastern China. J. Geophy. Res., Conditionally accepted.
- 5. **Hu, X.-M.**, and M. Xue (2016b), <u>Influence of synoptic sea breeze fronts on the urban heat island intensity in Dallas-Fort Worth, Texas, *Mon. Wea. Rev.*, doi:10.1175/MWR-D-15-0201.1.</u>
- 6. Hu, X.-M., et al. (2014), <u>Impact of the Loess Plateau on the Atmospheric Boundary Layer Structure and Air Quality in the North China Plain: A Case Study</u>, Science of the Total Environment, 10.1016/j.scitotenv.2014.08.053
- 7. Hu, X.-M., et al. (2013), <u>Impact of the Vertical Mixing Induced by Low-level Jets on Boundary Layer Ozone Concentration</u>, *Atmos. Environ.*, 70, 123-130
- **8. Hu, X.-M.**, J. M. Sigler, and J. D. Fuentes (2010), <u>Variability of ozone in the marine</u> boundary layer of the equatorial Pacific Ocean, *J. of Atmos. Chem.*, 66, 117–136.