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ABSTRACT 
The properties of errors associated with objective analysis models are examined in terms of 

atmospheric variables to obtain a better understanding of the accuracy of such methods. Several schemes 
have been developed since the late 1940s which are used for weather forecasting and diagnosis. This 
information is ultimately conveyed to the public; therefore, an examination of their accuracy is prudent. A 
removal and replacement technique is utilized to compare interpolated values to their corresponding 
observational values. The observation data are collected from a network of mesoscale weather stations 
from which three variables, air temperature, relative humidity, and wind speed, are analyzed. In order to 
determine some metric of accuracy, errors are considered to be interpolated values that exceed the 
observation instrument’s calibration range. These errors are then investigated further through a statistical 
analysis. The resulting analysis shows three levels of errors. The first and most fundamental level shows a 
comparison of the magnitude of errors. For a particular day and time, the results showed a root mean 
squared error for air temperature to be 1.37 C. The second shows the relative amount of error per variable 
per observation station and geographically where these errors occur most often. The results show that the 
majority of errors were air temperature (55.62%) and relative humidity errors (40.13%), while wind speed 
errors account for just 4.25% of errors. The third is an accumulative view of how many errors stations had 
over 12 candidate days (one per month) over a year with an average root mean squared error of 13 errors 
for any given Mesonet station. Further analysis of the results suggests that there may be a relationship 
between so called ‘edge-cases’ and frequency of errors, where an observation near the boundary of some 
finite area may not have sufficient input data to perform the interpolation effectively. It was found that 60% 
of the top ten stations with errors were indeed boundary cases. The results could also suggest that seasonal 
variability influences the scheme’s accuracy, particularly during winter months, however a more robust 
investigation is likely required. 

 
  

1. INTRODUCTION  
 

Objective analysis (OBAN) can be defined 
as a method that “follows a prescribed set of rules, 
or ’model,’ and will produce the same analysis 
given the same set of data.“ (McPherson, 1986). 
Discovering truth from empirical evidence is the 
overall goal of science, therefore, objective analysis 
is a natural extension for such efforts. In a 
generalized view, these schemes are a tool for 
researchers to automate much of the computation 
involved with the interpolation process. In the 
context of this study, an OBAN scheme is examined 
in terms of atmospheric variables collected from the 
Oklahoma Mesonet, a statewide mesoscale 
network of meteorological observation stations. 
Consequently, a foundational understanding for 

how such schemes are deployed in the 
meteorological field is recommended. 

One of the primary reasons OBAN 
schemes are used for weather forecasting or 
diagnosis, “is to interpolate irregularly spaced 
observational data to a uniform grid.” (Lu and 
Browning, 1998). It was found that “the type of 
scheme which has been most successful at doing 
this is a surface fitting scheme, that is, the method 
of fitting a geometrical surface to the reported data 
and calculating the values determined by that 
surface at any other points of interest, specifically, 
the grid points. “ (Barnes, 1964). Several varying 
schemes have been developed since “the late 
1940s, as numerical weather prediction was getting 
started” (Richard P. McNulty, 2011). One of the 
most often used, and the primary study of this 
paper, is the Barnes scheme. 

The Barnes scheme utilizes a 
mathematical structure founded on the assertion 
that “the two-dimensional distribution of an 
atmospheric variable can be represented by the 
summation of an infinite number of independent 
harmonic waves, that is, by a Fourier integral 
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representation.” (Barnes, 1964). However, Barnes 
acknowledges the limitation of the scheme’s 
dependency that the spatial distribution of data be 
reasonably uniform. One of the main reasons for 
this is because “sparse data distribution can lead to 
rapid convergence on observational errors, which 
can distort the analysis field.” (Lu and Browning, 
1998). The Barnes scheme utilizes inverse distant 
weighting to estimate unknown grid point values, 
which is a process where the sum of nearby data 
points determines the unknown value by placing 
weights on the data point values according to their 
distance from the unknown grid point. 

Since this scheme is often used in 
meteorological analysis, this study looks to build 
upon previous work (Barnes, 1964; Achtemeier, 
1987; Lu, Browning, 1998) by assessing the 
scheme’s behavior. The Oklahoma Mesonet’s 
(Brock et al., 1995; McPherson et al., 2007) 120 
stations are relatively uniform in their spatial 
distribution as well as elevation and are therefore a 
compelling candidate to use with the Barnes 
scheme in examination of its accuracy. In 
accordance with Barnes own assessment of the 
scheme, it is noted that grid points along the grid 
boundary may have erroneous estimations due to a 
lack of observed data in spatial proximity to such 
boundary grid points (Barnes, 1964). This study 
explores the properties of errors associated with 
interpolation, and hypothesizes that if interpolation 
errors do occur, then they most often occur at 
boundary grid points. 
 
2. METHODOLOGY 
  

The Barnes scheme is a combination of the 
successive corrections and inverse distance weight 
interpolation concepts. The premise of a 
successive corrections model “involves an iterative 
procedure. For each iteration, increments between 
the previous analysis field and the observations are 
computed at each observation location. These 
increments are then multiplied by a priori specified 
weights, summed over all stations, and the result 
added to the previous analysis field on the analysis 
grid. The iteration, coupled with a properly chosen 
weighting function, will converge to the observation 
values at the station locations.” (Lu and Browning, 
1998). It was found in later revisions to the Barnes 
scheme that a three-iteration (pass) or four-pass 
method rendered better results than the 
conventional two-pass method seen in Barnes’s 
1973 revision of the scheme (Barnes, 1994). This 
study examines the behavior of the Barnes scheme 

with three passes as to avoid the inherent problem 
of over-smoothing the analysis field seen with a 
larger number of iterations (Nuss and Titley, 1994). 

In conjunction with successive corrections, 
inverse distance weighting (IDW) involves a central 
process within each iteration where unknown grid 
point values are derived from known data points 
through “a least-squares fit of the surface to the 
data with the influence of each datum weighted 
according to its distance from the grid point.” 
(Barnes, 1964). IDW is limited to a finite area 
around the examined grid point known as the radius 
of influence (ROI). Further, the ROI “determines the 
values of the variable at grid points as the sum of 
weighted values of the individual data. The closer a 
data point to the grid point in question, the greater 
influence the datum at that point exerts.” (Barnes, 
1964). It was found that using a fixed ROI within 
each successive correction pass rendered better 
results than a previous convention based on the 
premise of “first analyzing for the long wave lengths 
and then building in the short waves through 
decreasing the radius of influence on each 
correction pass through the data.” (Achtemeier, 
1987). In this study, a fixed ROI value of 5 grid cells 
is utilized in accordance with previous work that 
showed superior results using a radius equal to two 
times the average distance between data points 
(Achtemeier, 1987). 

Concurrent with the radius of influence is 
an exponential decay function known as the 
convergence parameter. This function applies a 
non-linear weight factor to known grid point values 
within the ROI by multiplying the data points 
distance from the unknown grid point by the 
convergence parameter’s decay constant 
(lambda). It was found in Barnes’ revision of the 
original scheme that a lambda value of 0.25 
rendered more accurate interpolation values 
(Barnes, 1993). Therefore, this study uses 0.25 as 
the convergence parameter value. 

The computation to determine an unknown 
value at a particular grid point can be expressed 
where the weight factor (1) is applied to each datum 
value within the ROI and the sum of the weighted 
values, divided by the sum of their weights is equal 
to the interpolated value (2). 

 

 𝑤𝑗 = 𝑒
(−

𝑟2

4𝑘
)

   (1) 
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𝑋𝑖,𝑗 =
∑ 𝑤(𝑟,𝑑)∙𝑋𝑜𝑛
𝑛
𝑛=1

∑𝑤(𝑟,𝑑)
   (2) 

 
The dimensions of each grid cell are 

chosen as 10km2 with a buffer of 10km surrounding 
the outside edges of the state boundary to ensure 
grid points are satisfied such that their ROI contains 
a sufficient observation values to perform the 
interpolation (Barnes, 1964). Barnes does 
acknowledge that in some cases, specifically grid 
boundary cases, there may not be data points 
within these grid point’s ROI. (Barnes, 1964) It 
should be noted that an appropriate grid cell size is 
to be used depending on the total area being 
examined. For instance, a 100km cell size could 
result in poor resolution for an area the size of a 
single state but may be appropriate for the 
continental United States whereas a 10km cell size 
could be considered more appropriate for the state 
level. Computational time becomes a factor in 
accordance with a higher resolution grid. Generally, 
the higher the resolution, the longer it takes for the 
interpolation process to complete. An effective ROI 
is determined in part by grid spacing, it was found 
that two times the average spacing between data 
points resulted in superior results (Achtemeier, 
1987). 

The analysis grid is initiated with ‘missing’ 
values, and subsequently populated with station 
data according to the stations’ coordinates in 
relation to the grid structure. To assess how well the 
Barnes scheme estimates grid values, a removal 
and replacement process is implemented where for 
each grid cell containing station data, the station’s 
value is removed, and the estimation of the cell’s 
value is derived from the IDW values of nearby 
stations within the cell’s ROI. 

Upon completion of the three-pass 
correction, a statistical analysis compares the 
objective analysis values to their corresponding 
observations. A root mean squared error is 
calculated to show the averaged error rate, which 
identifies outlying errors not only by value, but also 
by station name. Such stations are then compared 
geographically to determine whether the station in 
question is a boundary grid point. In addition, the 
interpolated data grid is filtered by excluding values 
that fall within the analysis variable’s instrument 
calibration range from further examination. In this 
study, interpolated values that positively or 
negatively exceed the calibration range are 
considered to be true errors. Interpolated values 
within the calibration range are subject to as much 
scrutiny as the actual observation values and are 

therefore not pertinent to studying the Barnes 
scheme’s accuracy. 
     
3. DATA 
 

To assess the Barnes scheme’s accuracy, 
several key calculations are preformed using data 
collected from the Oklahoma Mesonet, a statewide 
mesoscale network of meteorological observation 
stations. Each Mesonet instrument is calibrated 
prior to deployment and monitored regularly to 
ensure collection of the highest quality data. 
(mesonet.org; Brock et al., 1995; McPherson et al., 
2007). Air temperature is measured at 1.5m above 
ground level and has an instrumentation calibration 
range of +/- 0.5o C. The sensor is housed in an 
aspirated radiation shield which continuously draws 
ambient air over the sensor, while protecting it from 
solar radiation. Humidity is measured at 1.5m 
above ground level as a percentage and has an 
instrumentation calibration range of +/- 3% in the 
relative humidity range of 10% to 98%. Wind speed 
is measured at 10m above ground level and has an 
instrumentation calibration range of +/- 0.3 m/s 

The analysis variables were chosen 
because of their resistance to high variance and 
localization. Other variables such as rainfall amount 
or atmospheric pressure can be highly localized, 
which has the potential to add unnecessary 
complexity to the examination of the scheme’s 
accuracy. One complexity being the problem of the 
‘bullseye effect’ in IDW, where among a relatively 
normalized field there exists unusually high 
variance at a particular grid point. The interpolation 
tends to create concentric and most likely 
erroneous values around the grid point. 

Candidate days (one per month) were 
selected which had relatively calm atmospheric 
conditions; times when there were no major frontal 
boundaries, no rainfall events, and a relatively 
smooth gradient of atmospheric pressure across 
the state to further reduce the number of factors 
influencing the analysis variables’ values. Further, 
the candidate days were chosen in this range to 
possibly see if seasonal variability influences the 
scheme’s accuracy. 
 
4. RESULTS 

Air temperature errors are visually 
represented by the difference of a station’s 
objective analysis (OBAN) value, and its real value 
(fig 1). Subsequent results are derived from this 
definition of the error. The error magnitude includes 
the analysis variable’s instrument calibration range, 
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represented by a dashed line. While there is no 
relationship between air temperature and station 
names, particular stations are identified for further 
analysis by examining their geographic location. 

  Figure 2 shows the same information of 
figure 1, however station OBAN values and real 
values are compared directly. Stations are denoted 
by the blue scatter dots, and the black 1:1 line 
represents a perfect interpolation where the OBAN 
value is the real value. Roughly one third of the 
stations had OBAN values within the upper and 
lower instrument calibration limit. For errors 
exceeding this range, the root mean squared error 

magnitude is 1.37o C. The most notable outlier for 
this particular day, time, and analysis variable is 
seen in both figure 1 and figure 2, with an error 

magnitude of roughly six degrees at the MAYR 
station.  

The previous figures have shown a visual 
representation of errors on a particular candidate 
day, at a particular time and only one of the three 
analysis variables. To gain a deeper understanding 
of the Barnes scheme’s accuracy it is necessary to 
examine errors over a period of time. Accumulated 
total amount of errors for each analysis variable are 
seen in the sorted arrangement of Mesonet stations 
in figure 3. Air temperature and relative humidity 
errors comprised the majority of errors at any given 
station, however wind speed errors mostly occurred 
at stations that had the most errors of all stations. 
The average amount of errors for all stations over 
the twelve candidate days is 13.19, however it 
should be noted this value is simply 13 as errors are 
discrete rather than continuous.  

A comparison between the relative number 
of errors for each analysis variable is seen in figure 
4 where among the twelve candidate days, 55.62% 
are air temperature errors, 40.13% are relative 
humidity errors, and 4.25% are wind speed errors. 
Since changes in the temperature of air can change 
the relative humidity, even when the absolute 
humidity remains constant, an error associated with 
air temperature may influence an error associated 
with relative humidity. Further analysis with more 
candidate days and different times of the day is 

Figure 1. The magnitude of error between interpolated and real values 

Figure 2. A comparison between interpolated and real values 
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required to explore this relationship in a meaningful 
way. 

A possible explanation for the left most 
stations in figure 3 could be a lack of initial data 
points within the respective station’s radius of 
influence. This leads to a situation where only after 
the first pass of the scheme, where a majority of the 
interpolation occurs, do input values become 
available for these stations. However, since these 
newly available input values themselves are the 
interpolated values from surrounding stations, their 

interpolated values are derived from calculated 
data instead of real data. This study hypothesizes 
that such situations most often occur at so called 
‘boundary’ cases along the edge of the examined 
area’s border. This is because a section of these 
station’s radius of influence exceeds the edge and 
therefore effectively has less overall area to include 
known data values. In some cases, no known data 
values are present. 
This idea is explored in figure 5 where for each 
Mesonet station, the number of total errors is 
compared to the number of known data points 

within the respective station’s radius of influence 
(ROI). Generally, as seen with the regression line, 
as the number of ROI data points increases, the 
total number of errors decreases. However, the 
greatest and least number of errors both occur 
when a station has a single known data point within 
the ROI. It should be noted that while the figure 
appears to only show a subset of Mesonet stations, 
each blue station point may have more than one 
station ‘stacked’ on top of one another at a 
particular point. All 120 Mesonet stations are shown 
here even if not directly. 

 
Figure 5. A comparison between the number of initial data 
points within each station’s radius of influence, and the 
number of errors at that station. 

To further illustrate the comparison of 
errors to data points within the ROI for a particular 
station, the top ten most erroneous stations and 
stations with no data points in their ROI are 
compared on a map of Oklahoma (fig. 6). The 
circles on the map are approximately equal to the 
area of the ROI used in this study. Red circles are 
the top ten most erroneous stations, blue circles are 
stations with no data points. The two stations with 
the most errors were KENT and BOIS, which are 
both furthest west in the panhandle. It should be 
noted their case is somewhat unique where they 
include only each other as the initial data points in 
their ROI. It follows that if one of the stations is 
erroneous, the other will also be erroneous. 
Other notable stations include BUFF and ARNE, 
which happen to be in both categories and are also 
both ‘boundary’ cases. However, not all of the top 
ten stations with errors are boundary cases. 
Stations HOBA, FAIR, MCAL and FREE are all 
considered interior cases, and therefore 60% of the 
top ten stations with errors are boundary cases. 
This may suggest a weak but noticeable 
relationship between boundary cases and number 
of errors at a station. 

Figure 3. Accumulated number of errors for each analysis 
variable over 12 candidate days. The x axis contains a sorted 
arrangement of Mesonet stations 

Figure 4. A comparison of the relative percentage of errors 
for each analysis variable 
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Figure 6. Circle - Approximate area of the radius of influence 
(ROI), red - top ten most erroneous stations, blue - stations 
with no data points in their ROI 

The total amount of stations who had at least one 
error is seen in figure 7 in a comparison with 
stations who had no errors. While the x axis does 
list months sequentially starting in May (2020) and 
ending in April (2021), the plot is not meant to 
describe an averaged value for the given month. 
Since the twelve candidate days are one day at one 
time per month, it is inappropriate to assume this 
accounts for the behavior of the scheme over an 
entire month. However, the plot does show that the 
highest number of errors occurred in April 21’, and 
the lowest in July 20’ with a gradual increase in 
errors from the July candidate day to the April 
candidate day. 

 
Figure 7. A comparison of the total number of errors for each 
candidate day 

 
5. CONCLUSION 

The accuracy of objective analysis 
schemes was examined using data from the 
Oklahoma Mesonet. A removal and replacement 
process was utilized where for each Mesonet 
observation value, a corresponding objective 
analysis value was calculated using the Barnes 
scheme. The calculated values were derived from 
three analysis variables chosen to be examined, air 
temperature, relative humidity, and wind speed. 
These variables are examined during candidate 
days which were chosen to be studied when 
atmospheric conditions were relatively calm, 

meaning no major frontal boundaries, rainfall 
events, or high variance in atmospheric pressure 
was present across the state.  

Accuracy is best defined in this study as a 
discrete classification of values being either an 
error or non-error where the magnitude of the 
difference between an OBAN value and the 
corresponding observation value which exceeds an 
instrument’s calibration range is considered 
erroneous. Using this metric, accuracy is examined 
at three levels, beginning with a particular analysis 
variable on a particular candidate day.  

It was found that the root mean squared 
error for air temperature on May 01, 2020 was 1.37o 
C, and the largest magnitude of all errors was 
roughly six degrees over the real value. The second 
level of analysis examines accumulative errors 
across all Mesonet stations, analysis variables, and 
candidate days. It was found that 55.62% of errors 
were air temperature errors, 40.13% were relative 
humidity errors, and 4.25% were wind speed errors. 
The third level of analysis examines geographically 
where errors occur most. It was found that a 
majority of the top ten most erroneous stations were 
considered to be ‘edge’, or ‘boundary’ cases, and of 
these ten stations, two of which did not have initial 
input data. Further analysis was conducted on a 
comparison between the number of errors at a 
station and the number of initial data points within a 
stations radius of influence (ROI). It was found that 
there is a general relationship between the two, with 
a gradual lowering of errors as the number of data 
points within the ROI increases. 

While this study is a high-level overview of 
the accuracy of the Barnes scheme, it is not 
comprehensive. Future research is necessary for a 
more deterministic approach in the examination of 
objective analysis accuracy. This should include a 
greater data set comprised of many more candidate 
days, different times within each candidate day, and 
perhaps more analysis variables. Since this study 
was focused particularly on the Barnes scheme, it 
may be prudent to use similar metrics on other 
objective analysis schemes such as the Cressman 
scheme. Further, the parameters of the Barnes 
scheme may be adjusted to minimize error 
emergence for each analysis variable, and also for 
seasonal variability if it is found to affect the 
accuracy. 
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